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Automated optogenetic feedback control for
precise and robust regulation of gene expression
and cell growth
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Dynamic control of gene expression can have far-reaching implications for biotechnological
applications and biological discovery. Thanks to the advantages of light, optogenetics has
emerged as an ideal technology for this task. Current state-of-the-art methods for optical
expression control fail to combine precision with repeatability and cannot withstand changing
operating culture conditions. Here, we present a novel fully automatic experimental platform
for the robust and precise long-term optogenetic regulation of protein production in
liquid Escherichia coli cultures. Using a computer-controlled light-responsive two-component
system, we accurately track prescribed dynamic green fluorescent protein expression profiles
through the application of feedback control, and show that the system adapts to global
perturbations such as nutrient and temperature changes. We demonstrate the efficacy and
potential utility of our approach by placing a key metabolic enzyme under optogenetic control,
thus enabling dynamic regulation of the culture growth rate with potential applications in
bacterial physiology studies and biotechnology.

TDepartment of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland. * These authors contributed equally to this work. Correspondence
and requests for materials should be addressed to M.K. (email: mustafa.khammash@bsse.ethz.ch).

| 7:12546 | DOI: 10.1038/ncomms12546 | www.nature.com/naturecommunications 1


mailto:mustafa.khammash@bsse.ethz.ch
http://www.nature.com/naturecommunications

ARTICLE

ptogenetic manipulation of biological systems holds

the promise to revolutionize many areas of biology

and biotechnology!. Using light-sensitive proteins and
domains, light enables the rapid, targeted, low-cost and precise
spatiotemporal modulation of protein function with low to no
toxicity, while avoiding the pleiotropic effects of small-molecule
inducers. These features have led to an explosive increase in the
number of optogenetic applications in recent years®%.

A key emerging optogenetic application is the control of gene
expression. Such control may be achieved in an open-loop
manner by administering light-induced perturbations to a
given system with the goal of achieving a prescribed expression
profile. State-of-the-art work in this area® involved the use of a
finely tuned mathematical model obtained through a long
characterization process and recalibrated daily. While such
open-loop operation is effective for parts characterization, as
nicely demonstrated in Olson et al.’, the general applicability of
this approach in biotechnology is ultimately limited by the
fact that the model is only accurate for one specific culture
condition, and any alterations or slight disturbances to cultures
during the course of an experiment would result in inaccurate
tracking. Precision, robustness and repeatability are thus
restricted by day-to-day variability in cellular behaviour,
changes in the cellular environment, and the typically limited
quantitative understanding of the open-loop controlled system.
Overcoming these challenges promises to unlock the huge
potential of optogenetics for biotechnology applications.
An effective and feasible technoloogy for achieving this is
in silico automatic feedback control!’. This involves measuring
the system output in real-time, comparing it against a desired
tracking objective, and feeding the difference to a dynamic
control system, which in turn uses it to compute the necessary
adjustments of the system input. Automatic feedback control
of cell populations has been implemented'!~!> with promising
results using microfluidics. However, while microfluidic
approaches are well-suited for high-throughput analysis of
single-cell behaviour as well as biomedical diagnostics,
promising biotechnological applications of optogenetics, such as
control of metabolic activity in microbial production strains!*!>,
require the use of large-volume liquid cell cultures.

In previous work!®, we introduced feedback control for a
red/far-red light system in yeast liquid cultures. While the
implemented control scheme served as a proof-of-concept study
of the applicability of feedback, tracking accuracy was rather
modest and the controller was incapable of robust, precise
regulation in the face of external perturbations and day-to-day
variability. The feedback control also relied crucially on the
experimenter manually acquiring samples and applying
the necessary control inputs to the system—a tedious, repetitive
and error-prone task that also limited the maximum measurement
and input application frequency.

Here, we significantly improve on these results by presenting
a completely automatic system capable of long-term optical
feedback control of gene expression in continuous liquid cultures.
We use a light-switchable cyanobacterial two-component system
in Escherichia coli®'7 (Fig. 1a), consisting of the sensor histidine
kinase Cca$ and its cognate response regulator, CcaR, to precisely
regulate the expression of superfolder green fluorescent protein
(sfGFP) over time. As will be discussed below, several system
features pose great challenges to this task. With our automatic
experimental platform, we perform a comprehensive analysis of
the performance of two different control strategies in terms of
reference tracking and disturbance rejection. Using our feedback
schemes, we are able to achieve highly accurate tracking and
robustness to large, global perturbations to the cell culture.
Finally, to demonstrate the potential of light-based feedback
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control in biotechnological applications as well as basic research,
we use our optogenetic system to regulate the expression levels
of methionine synthase—MetE—which catalyses the final,
rate-limiting step of methionine biosynthesis in E. coli cells. By
regulating MetE expression based on the continuous automatic
measurements of the instantaneous culture growth rate, we
present a useful and powerful application of optogenetics for
long-term cell growth control.

Results

Experimental setup. Our experimental platform is shown on
Fig. 1b. It consists of three modules: (a) an inexpensive,
custom-made turbidostat to maintain constant culture conditions
for arbitrarily long time spans; (b) an automatic system for sample
acquisition and quantification via flow cytometry; and (c) a
computer-controlled light-delivery system. All system components
are controlled by Python scripts and generic microcontrollers that
together enable the system to function completely autonomously.
The whole platform can be easily run by a single user.

Our turbidostat follows a simple and intuitive design'® (see the
Methods section and Supplementary Note 1). An infrared sensor
measures the amount of light absorbed by the culture and feeds
the measurement to a proportional-integral feedback controller
implemented on a microcontroller, which computes the necessary
dilution rate to maintain a given culture density. The control
signal is then fed to two peristaltic pumps, one of which adds
fresh medium and the other removes liquid at the same rate.

We decided to implement a custom automatic flow-cytometry
setup because of the lack of low-cost commercial solutions. Our
design is based on the same principles used in previous work!?23,
but is tailor-made for fast sampling frequencies (up to 2 min) and
minimal cross-sample contamination, disregarding more complex
functions such as sample processing offered by other automatic
setups. It is able to fulfil these two design goals with commonly
available and inexpensive parts, such as pinch valves and peristaltic
pumps. The operation of sampling setup in conjunction with the
flow cytometer is coordinated from a central computer. Further
details are provided in the ‘Methods’ section.

Finally, our custom-built light-delivery system (see the
‘Methods’ section and Supplementary Note 2) offers individual
light intensity modulation for two LED groups (red and green)
and contains an integrated heated magnetic stirrer that is used in
conjunction with a bead bath to maintain culture temperature
and aeration conditions through continuous stirring.

Feedback control systems. The CcaS/CcaR gene expression
system dynamics comprise two distinct timescales: whereas
activation and deactivation are completed in a few minutes, sfGFP
expression level changes can be observed on a timescale of tens of
minutes, due to the slow processes of maturation and dilution.
The background fluorescence and maximum induction level vary
significantly from day-to-day, as does the dynamical response of
the system to step changes in the light input (Supplementary
Note 3). The speed of the latter also depends non-trivially on
the magnitude and direction of the step’ (a positive-feedback
mechanism arising from transcriptional read-through in the
CcaS-CcaR plasmid has been suggested as a possible cause for
this behaviour?®). All these features pose great challenges to the
precise dynamic control of stGFP expression driven by the
CcaS-CcaR system, emphasizing the need for closed-loop
controllers.

The control algorithms implemented in this work fall under two
broad categories: proportional-integral®> (PI) and model predictive
control (MPC)?S. Besides their very simple implementation, PI
controllers guarantee zero tracking error in the steady-state for
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Figure 1 | Light-switchable two-component system used in this work and experimental platform for optogenetic feedback. (a) On absorption of green

light, the sensor histidine kinase CcaS is quickly autophosphorylated and tran
Phosphorylated (active) CcaR in turn binds to the cpcG2 promoter to activate
transcription is eventually switched off. It has been hypothesized—but not yet ¢
CcaR. (b) Schematic of the constructed experimental platform containing the
control/measurement signals sent to/from the various devices. Curved lines i
direction of flow/rotation. Computer icons are used to indicate control hardw.

sfers its phosphate group to the cognate response regulator CcaR.
transcription of sfGFP. Absorption of red light inactivates CcaS, and
onclusively demonstrated—that the inactive form of CcaS dephosphorylates
turbidity, autosampling and light-delivery modules. Straight lines denote
ndicate tubing segments. Arrows above tubing lines/pumps indicate the
are and do not necessarily correspond to separate computing devices.

Feedback control computations, LED control and autosampling are carried out by a single laptop, while turbidity control is coordinated by a programmable
logic device. Further details are provided in the ‘Methods’ section. Every 10 min., the sampling system acquires a culture sample via flow cytometry, saves

and processes the sfGFP fluorescence data. On the basis of the measurement, t

he control algorithm determines the green-light-intensity level to be applied

to the culture until the next measurement. In this way, the system can track a user-defined sfGFP expression profile.

constant references, and perfect steady-state rejection of constant
disturbances®®. Moreover, PI control does not require a model of
the controlled system, although a rough idea of the system
response timescales is necessary for proper tuning (Supplementary
Note 4). It uses the error between the current and the
desired system output to compute the next control input by
forming the sum of two terms: one proportional to the
current error, and the other proportional to the time integral of
the error (which summarizes the past error behaviour).
On the downside, PI controllers are not capable of accurately
tracking time-varying references, unless they change very slowly.
They are also naturally better suited to systems that display a linear
dynamic behaviour and require extra modifications to function
adequately in the case of nonlinear systems, such as the one at
hand (see the ‘Methods’ section).

MPC controllers can address both of these limitations?®. On
the basis of a model of the controlled system and an estimate of
its current state, an MPC controller first computes the sequence
of control inputs that will bring the system output as close as
possible to the reference over a given time horizon. The first step
of this sequence is applied, the new system state is estimated and
the whole process is repeated at the next step. Thanks to its ability
to look ahead’, MPC can thus use the result of an optimization
procedure to track complex, time-varying reference trajectories.
At the same time, the iterative input computation ensures that
modelling inaccuracies do not propagate in time. Therefore,
tracking can be achieved with only a crude model of the
controlled system. However, the improved performance comes at
a computational cost, since MPC controllers are generally more
complex than PI controllers (see the ‘Methods’ section).

Tracking of reference sfGFP profiles. Being able to achieve and
maintain constant levels of protein abundance is perhaps the
most basic functionality required from an optogenetic control
system. We first used both PI and MPC controllers to regulate the
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average of normalized sfGFP fluorescence (sfGFP signal divided
by forward scatter—see the ‘Methods’ section for details) to
several setpoints, as shown in Fig. 2a. The controllers were able to
achieve and maintain the desired sfGFP levels in a reproducible
manner (Supplementary Note 5) within the pre-specified
tolerance levels (grey bands). Despite the careful tuning of the PI
controller, MPC was able to achieve the target expression levels
faster, thanks to its ability to anticipate the future behaviour of the
system, which allows it to apply strong inputs at the start of the
experiment to quickly increase sfGFP expression. PI controllers
would need to operate under very high gain settings to achieve an
equally fast rise, however, this would inevitably result in large
oscillations around the target levels (Supplementary Note 4).

The PI and MPC input profiles are markedly different: PI
inputs vary more smoothly over time, since the controller output
cannot change too much from one measurement to the next. On
the other hand MPC inputs vary more due to the fact that every
input is the result of an optimization procedure that is run at
every time step. Since the used model is only an approximation of
the actual system, the controller is continuously revising its
predictions about the future output evolution.

We next sought to investigate the tracking performance of our
feedback controllers in the case of time-varying stGFP references.
Figure 2b compares the tracking performance of MPC and PI
control in the case of a sinusoidal reference with a 2-h period.
The advantages of MPC over PI become clear in this case: the PI
control response shows a reduced amplitude and a phase shift of
around 180° compared with the reference. In contrast, the MPC
response stays within the tolerance margin (grey band) for the
majority of the experiment. The use of real-time feedback is
essential for achieving this result. To demonstrate this, we applied
the same light input that was used to obtain the green curve
(Fig. 2b) to a culture grown on a different day. In principle, the
obtained response should be identical to the green—yet, it is not.
Due to the day-to-day changes in the dynamic behaviour of the
cells, and despite the fact that the cultures were prepared using
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Figure 2 | Tracking of reference sfGFP expression trajectories. Dots denote sfGFP measurements, lines are polynomial fits. (@) Constant reference
tracking: for each constant reference level, a Pl and an MPC controller were used. Grey bands determine a tolerance margin around each setpoint ( £ 5% of
the target level). It should be noted that MPC responses achieve the target (that is, stay inside the grey band) much earlier than Pl responses. The applied
green light inputs, expressed as a percentage of the maximum green LED intensity, are shown for the starred reference. All applied light inputs can be found
in Supplementary Note 5. The maximum allowable LED intensity for MPC was limited to 60% since the dose-response curve (Supplementary Note 11) of
the system is almost flat above this level. Pl gains were set to Kp =80 and K;=8. (b) Tracking of a sinusoidal reference: since the reference varies relatively
fast with respect to the intrinsic timescales of the system, tracking is impossible for the Pl controller (gains as in a). On the other hand, MPC control was
still capable of excellent tracking. The grey band denotes a tolerance margin around the reference trajectory (£ 5% of the reference curve). To determine
the repeatability of open-loop input application, the MPC input profile (green line) was applied to a culture grown on a different day, using the same growth
protocol and conditions. Day-to-day variability in the dynamical behaviour of the culture is manifested in the deviation of the dark-grey response from the
reference trajectory. (¢) Tracking of a piecewise linear reference: Pl control is known to generate a constant steady-state tracking error for linearly
increasing inputs2> (unless the controlled system behaves like an integrator by itself), and was therefore not tested. MPC again achieved very good tracking
(grey band depicts £ 5% of the final constant level). Repetition of the MPC input profile (green line) on a different day, resulted in the dark-grey response.
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the same protocol and kept under identical conditions, the dark-
grey line shows a clear upward trend, and deviates significantly
from the target profile.

As a final test, we used the MPC controller to track a piecewise
linear sfGFP expression reference (Fig. 2c). After the initial
transient, sfGFP levels remained within the tolerance band
margin (5% of the maximum reference level), while the
application of the same input sequence to a culture grown on a
different day again resulted in large tracking inaccuracy.

Disturbance rejection and perfect adaptation. Disturbances are
unwanted perturbations that can alter the response, the behaviour
or the measured output of the controlled system, and
consequently lead to gross inaccuracies in the tracking of a given
reference. Disturbances in a biochemical system may arise
due to unwanted interactions with its cellular environment, or
changes in the external environment of the culture. In fact,
complete isolation of the controlled system from its intra- and
extra-cellular environment is nearly impossible. One of the
principal reasons for the use of feedback control is its ability to
attenuate the effect of disturbances on the system output?’,
thereby enabling robust tracking of the desired output
reference. On the contrary, open-loop control is completely
incapable of disturbance rejection: by their very nature,
disturbances are unmodelled inputs that cannot be anticipated,
and thus application of pre-computed input sequences cannot
compensate for output deviations caused by disturbances.

To demonstrate the disturbance-rejection capabilities of our
feedback controllers, we performed a series of large, global
perturbations to our cell cultures (Fig. 3). For every test, the
average of normalized sfGFP (see the ‘Methods’ section) was first
driven to a pre-specified reference level using feedback control.
The cultures were then perturbed, and the controllers were left to
automatically compensate the effect of the perturbation and bring
the output back to the target reference. The performance of
controlled cultures was compared with the behaviour of cultures
in which the PI feedback controller was turned off at the time of
perturbation, and its output was maintained at a constant level
equal to its value just before the perturbation. The use of PI
control for these cultures during the pre-perturbation phase was
motivated by the fact that this controller can ‘learn’ the constant
light input required to maintain the system at the desired
reference level, whereas the MPC input fluctuates in time.

In our first test, the turbidostat feed of cultures grown in
M9 minimal medium was abruptly switched to richer LB
medium. This resulted in a marked change in cellular growth
and morphology: within an hour after the perturbation, cell size
increased significantly (Supplementary Note 6), while the culture-
doubling time shifted from ~38min in M9 to ~25min in LB.
These large-scale changes reflect the massive re-organization of
cellular metabolism that takes place in the shift from a minimal to
a rich growth medium. Its effect can be seen in the complete
collapse of the uncontrolled system output (dark-grey line) on
Fig. 3a. In sharp contrast, both MPC and PI controllers manage to
bring the output within the tolerance band (£ 5% of the target).

For the second test, cultures grown at 37°C were abruptly
shifted out of the heat bath and left to cool down to 28 °C over the
course of 30 min. (Fig. 3b). Consequently, the doubling time
increased from ~38min to >1h, while cells shrunk in size
(Supplementary Note 6). While the fluorescence of the
uncontrolled culture eventually decreased slowly over time,
the MPC controller was able to maintain the system within
the tolerance band (+5% of the target) at all times after the
perturbation. The use of a PI controller in this case would be
problematic: as the system becomes increasingly unresponsive at

28°C and slows down considerably, the accumulation of large
integral errors in the PI controller would lead to highly oscillatory
outputs unless an anti-windup?’ scheme was used.

In the final test, an artificial input perturbation was introduced
to the system by subtracting 50% of the LED intensity that
was applied by the PI controller 5h into the experiment, after
steady-state had been achieved (Fig. 3c). In this case, the cells
received a smaller amount of green light after the perturbation,
and the feedback controllers had to compensate for the decrease
by requesting the application of larger control inputs. The
dark-grey line demonstrates the effect of the input reduction, as
the cells shift to a lower steady-state fluorescence. On the other
hand, both controllers are able to reject the disturbance and move
the system back to the tolerance band (£ 5% of the target).

Optogenetic control of cell growth. The powerful capabilities of
optogenetic regulation can be very advantageous for the control
of biologically relevant cellular processes, such as cell growth. One
significant challenge in bioprocess regulation is the control of
biomass accumulation, with the aim of optimizing the production
efficiency of desired chemicals or proteins while minimizing
the accumulation of toxic byproducts. A classical approach for
limiting growth is the use of rifampicin to inhibit the bacterial
RNA polymerase, and thus increase T7 RNA polymerase-driven
recombinant protein expression®8. Others include the limitation
of a growth substrate, typically glucose?® or phosphate®’, and
regulation of the growth rate with temperature®!. The first two
approaches suffer from significant drawbacks: antibiotics may
cause cell death and are costly; on the other hand, nutrient
limitations affect both catabolism and anabolism, leading to
global metabolic changes that may adversely affect the
accumulation of the desired product. Finally, the maximal
speed of temperature changes is limited by equipment
capabilities and the culture volume.

In recent work, a synthetic growth switch in E. coli based on the
inducible expression of the 8 and [} subunits of RNA polymerase
was presented>2. That system displays an ultrasensitive response of
growth rate to subunit expression, while it relies on IPTG for
induction. For increased flexibility, a better titratable system with
easily reversible induction would thus be desirable. Following an
alternative path, we chose to control protein synthesis and,
ultimately, cell growth by modulating the expression levels of the
E. coli methionine synthase—MetE.

E. coli has two methionine synthases, the cobalamin
(By,)-dependent MetH and Bj,-independent MetE synthase.
Since E. coli is incapable of synthesizing B;,, MetE is the only
functional enzyme that catalyses de novo methionine synthesis in
the absence of exogenous B;, (ref. 33). Furthermore, MetH
abundance appears to be much smaller than MetE in minimal
medium®®, MetE is thus essential for methionine synthesis
in a methionine-dropout medium, and is therefore greatly
upregulated under these conditions®’. Being a slow enzyme,
MetE also catalyses the rate-limiting step in methionine
biosynthesis>>*4. Due to the fact that N-formylmethionine is
required to initiate translation of all proteins, changes in MetE
abundance should have an immediate impact on methionine
availability and, ultimately, protein synthesis. As was recently
experimentally verified?*3°, MetE levels indeed determine the cell
growth rate.

An open-loop control scheme for MetE had been suggested in
the literature?, and we therefore first sought to reconstruct the
strain used in that study. Unfortunately, with our experimental
setup and growth protocols, the cells failed to grow without
methionine, regardless of the light conditions. This is presumably
due to several limitations of the original CcaS/CcaR system,
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Figure 3 | Rejection of large disturbances to the cell culture. Dots denote sfGFP measurements, lines are polynomial fits. In all panels, the grey band
corresponds to + 5% of the target expression level. Each curve corresponds to a culture started on a different day. Wherever applicable, the Pl gains were
set to Kp =80 and K;= 8 from the beginning of each experiment up to an hour before the perturbation. At this point, they were changed to to Kp =160 and
K;= 20 and the cultures were maintained for an additional hour at the same reference before the disturbance was applied. (@) A change of culture medium:
the turbidostat feed was switched from M9 to LB at the 5h mark, inducing a large perturbation to the culture. Day-to-day variability in controlled
system dynamics led to a long transient phase for the red curve. The first part of this response is therefore not shown. For the dark-grey response we used a
Pl controller during the M9 phase, and switched it off after the shift, keeping the light input constant at the pre-shift level. (b) A decrease in culture
temperature: for the dark-grey response we used a Pl controller during the 37 °C phase to achieve the desired sfGFP fluorescence. The transient phase of
the Pl response is not shown on the plot. The Pl controller was switched off after the cells were taken out of the heat bath and light input was kept constant
at the pre-shift level. (¢) An input perturbation: after 5h into the experiment and until the end, the green light input was reduced by subtracting 50% of the
Pl input at 5h, to mimic a damage in the light-delivery system. For the dark-grey response we used a Pl controller during the first 5h, and switched it off
after the perturbation, keeping the light input constant at the reduced level.

outlined in the ‘Methods’ section. To affect the growth rate of a
liquid culture grown in methionine-dropout minimal medium,
we instead coupled a refactored version of the CcaS/CcaR system
featuring reduced transcriptional leakage and higher dynamic
range (see the ‘Methods’ section) with the methionine
biosynthesis pathway. This was achieved by integrating a single
copy of metE under CcaR-dependent transcriptional control into
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the chromosome of a AmetE strain (Fig. 4a and see the ‘Methods’
section). The deletion strain with light-inducible MetE expression
had a doubling time of around 55min when grown under full
green light, which is a bit longer than the 38 min doubling time of
the sfGFP strain described above. On the other hand, growth
under red light increased the doubling time to about 200 min
(Fig. 4c and Supplementary Note 7).
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modified cpcG2 promoter (Pcpcc2450) that is activated by CcaR results in light-inducible growth-rate modulation when cells are grown in M9 medium lacking
methionine. (b) Nested feedback loops for turbidity and growth-rate regulation. The inner turbidity control loop maintains a constant culture optical density
as described above. The outer control loop monitors the influx pump control signal, u, to infer the culture growth rate after some simple signal-processing
operations (see the ‘Methods’ section and Supplementary Note 7). A Pl controller (see the ‘Methods' section) makes use of this information and
modulates the ratio of green-to-red intensities so that the culture achieves a user-defined growth rate within the dynamic range of the system. (¢) Coloured
lines (upper panel): tracking of constant growth-rate setpoints using a Pl controller (Pl gains: K;= 45 for all curves, and K, = 6,000, 8,000 and 10,000 for
the green, magenta and blue curves, respectively). The applied light inputs (lower panel), expressed as a percentage of the maximum green LED intensity
(see the ‘Methods’ section), are colour-coded according to the corresponding growth-rate curve. Solid black lines: minimum and maximum achievable
growth rates. Under full-intensity green light, the cells achieve a growth rate of around 0.0139 min ' (doubling time of ~50 min). Growth under
full-intensity red light reduces the growth rate to about 0.0035min ' (doubling time of ~200 min), but it should be noted that after prolonged growth

under red light, the cells start to adapt and grow at a faster rate.

To measure the instantaneous growth rate, we made use of the
fact that when culture density is maintained constant inside the
turbidostat, the supply rate of the influx pump is directly
proportional to the growth rate (Fig. 4b and see the ‘Methods’
section). In this way, after proper conversion of the turbidostat
controller output into flow rate and the necessary signal-
processing steps (Supplementary Note 7), the growth rate can
be sampled at a high-frequency rate (~1Hz) and fed into an
external PI controller that tracks a user-provided target growth
rate by appropriately modulating the green-to-red light intensity
ratio (Fig. 4b). The final closed-loop system thus consists of an
inner control loop for constant cell-density maintenance, and an
outer control loop for light-based growth-rate control (Fig. 4b).
In this scheme, the output of the inner loop controller (the inflow
rate of fresh medium) is used as the input to the growth-rate
controller in the outer loop.

Contrary to the relatively well-understood dynamics of the
GFP expression system, regulation of MetE generates a feedback
loop between global cell physiology and gene expression, whose
dynamics is much harder to describe. Despite this complexity, a
PI controller proved to be sufficient for precise growth-rate

regulation, thanks to the slow dynamics of the overall system.
As the results of our tracking experiments demonstrate
(Fig. 4c and Supplementary Note 7), the controller was able to
achieve and maintain a desired growth rate within the available
dynamic range, despite a drift in the light sensitivity of the
cells over time resulting from undesired selection effects
(see the ‘Methods’ section). This can be observed in the small
downward trend of the green light-intensity curves of Fig. 4c and
the data of Supplementary Note 7. This drift is a consequence of
the PI controller adaptation to the gradual speed up of the cells—
essentially a disturbance-rejection property that no open-loop
control scheme could achieve.

Discussion

We have presented an integrated framework for automatic
optogenetic feedback of liquid cell cultures that comprises
tailor-made hardware and software. With its help, we have been
able to achieve excellent precision in the regulation of protein
expression driven by a light-switchable two-component system in
E. coli. Moreover, we have shown how feedback operation enables
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the system to function reliably even in the presence of large global
perturbations to the culture, such as a change of the growth
medium, a temperature shift or an input perturbation. Taken
together, these benefits demonstrate the advantages of feedback
regulation over open-loop control approaches typically reported
in the optogenetics literature.

Our experimental platform also enabled us to explore the
accuracy/complexity trade-offs of two different feedback-control
schemes, and investigate their interplay with the biological system
under study. Our results on the control of continuous cell cultures
nicely complement recently presented work®®, which compared
the performance of three alternative control strategies (PI, MPC
and Zero Average Dynamics) for the regulation of fluorescent
protein levels using a galactose-inducible system in yeast grown
inside a microfluidic device. They also constitute a significant
extension, both in terms of complexity and accuracy, of the work
presented in ref. 37.

Besides the feedback-control algorithms tested in this work,
our experimental platform can be easily used with alternative,
possibly more advanced, controllers and serves as a test bed for
various control approaches from the rich automatic control
literature3®,

Apart from biotechnology applications, our platform also
naturally lends itself to the generation of controlled perturbations
for the characterization of endogenous intracellular pathways?, as
well as the closed-loop identification of cellular networks®® and
the design of optimal control inputs for parameter inference
and/or model selection.

Our system can be expanded in several directions: the use of
parallel continuous cell cultures and multiplexed sampling
(for example, with the help of a simple x-y-z robotic arm) will
accelerate data collection and speed up the controller-tuning
process. On the other hand, more complex feedback-control tasks
(such as the simultaneous control of protein mean and variance
over a cell population) can be accomplished via the incorporation
of multiple orthogonal optogenetic systems within the same
cell*!, and the use of multivariable control techniques*2.

To demonstrate the capabilities and potential of optogenetic
feedback, we chose to dynamically regulate the culture growth
rate by placing the supply of intracellular methionine under
optogenetic control, thus effectively controlling the global
protein-synthesis rate in the cells. Despite the increased dynamical
complexity of the resulting system, we demonstrated that
precise growth-rate regulation is possible and indeed achievable
without the use of sophisticated measurement systems, simply by
monitoring a control signal in our turbidostat. Furthermore, the
ability to control the growth rate can be also be used to study how
bacterial physiology responds to dynamic variations in global
protein-synthesis rates*’, thus overcoming the limitations of
studies focusing on steady-state growth.

Ultimately, the measurement automation and light-control
systems, as well as the control algorithms used here could be used
for online monitoring and optogenetic feedback control of cells
inside bioreactors. In the field of bioprocess regulation, external
feedback using appropriate biosensors and inducers has already
been proposed as a means to improve productivity, robustness
and batch-to-batch reproducibility!#. Light would be an ideal
inducer for gene-expression control of these systems, as it can
provide targeted, non-toxic and bidirectional regulation, which
more-expensive chemical inducers cannot achieve. On the other
hand, there are great challenges that need to be addressed for this
approach to be technically and economically viable. Bioreactors
typically operate at very high cell densities and are opaque.
Delivering light to large-volume, dense cell cultures will thus
require the careful study, design and construction of the light
sources for this task, taking into account issues such as
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mechanical stresses, electrical wiring and mixing efficiency. The
use of optogenetic induction systems optimized for maximum
sensitivity and slow dark reversion*»*>, implies that very
low-intensity (or even intermittent®) exposures will be
sufficient for induction and may help in this direction. Recent
experimental results on the open-loop optogenetic regulation of
gene expression in small mammalian cell bioreactors® make us
optimistic that case-specific solutions will be feasible in the future.
Regardless, optogenetics may eventually be very useful in fast
prototyping of new metabolic pathways or tuning existing
metabolic networks in small-scale lab setups.

Methods

Strains and plasmid construction. E. coli strains, plasmids and primer sequences
used in this study are listed in Supplementary Table 1 (Supplementary Methods).
Strain JT2 containing the phycocyanobilin (PCB) biosynthesis plasmid pPLPCB(S)
and ccaS/ccaR plasmid pJT119b was used for all fluorescence-based feedback-control
experiments’. Strain JT2 AmetE:FRT Tn7:FRT-PcpcG2459-metE-containing
plasmids pPLPCB(S) and pSKA413 was used for the cell-growth-control
experiments (details provided in Supplementary Methods). Plasmids, plasmid
sequences and the host strain constructed for cell-growth-control experiments are
available at Addgene (#80380, #80381, #80403).

Culture media. Cells were grown in LB (1% tryptone, 0.5% yeast extract, 1% NaCl)
or M9 medium supplemented with 0.2% casamino acids, 0.4% glucose and 0.001%
thiamine unless otherwise indicated. For the growth-control experiments, M9
methionine-dropout medium supplemented with 0.4% glucose, 0.001% thiamine
and 19 amino acids (40 pgml ~ 1) was used. Antibiotics were used at the following
concentrations: chloramphenicol, 34 g ml ~}; spectinomycin, 100 pgml ~ %
ampicillin, 100 pg ml ~1; kanamycin, 40 pgml ~ 1.

Growth conditions. All overnight and turbidostat cultures, with the exception of
the culture shifted to LB, were grown in M9 medium.
Overnight growth and initialization protocol for GFP experiments.

(1) Two 5ml cultures are started from the — 80 °C glycerol stock on the evening
before the experiment. Cells are grown in black 15ml centrifuge tubes
(TB1500, Argos Technologies) containing M9 medium with antibiotics at
37 °C with shaking at 230 r.p.m. Since Cca$ is produced in its inactive form,
the background sfGFP fluorescence of cells grown in the dark is the same as
that of cells grown under red (inactivating) light. The starting ODgq, is set in
such a way that the cells grow in exponential phase (after a ~1h lag) for
10-12h before the beginning of the experiment the next morning, and are at
ODgg 0.08-0.1 right before being transferred to the light-delivery system.

(2) The next morning, after an ODggo measurement to verify overnight growth, the
culture is transferred into a 25ml glass centrifuge tube (Schott 2160114,
Duran) with a 3 x 8 mm magnetic stir bar (13.1120.02, Huberlab) that is placed
inside the bead bath of the light-delivery system. M9 medium (w/antibiotics) is
added to a final volume of ~17-18ml. The cells are left to settle under red
light illumination at 37 °C with stirring at 1,500 r.p.m. while the sampling
system and turbidostat are set up.

Overnight growth and initialization protocol for growth control experiments.

(1) Overnight cultures are grown in M9 medium inside clear culture tubes and
green light illumination, to stimulate the production of MetE. The starting
ODgg is set in such a way that the cells are still in exponential phase
(ODg0p<0.2) on the following morning.

(2) The next morning, the overnight cultures are centrifuged and washed twice
with M9-dropout medium lacking methionine before being transferred into
25 ml glass tubes containing M9 methionine-dropout medium. Before the start
of the growth-control experiments, the cells are grown inside the light-delivery
system (37 °C with stirring at 1,500 r.p.m.) under full-intensity green light for
~6-7h, to reach their maximal steady-state growth rate in the dropout
medium.

Automatic sampling setup. The automatic sampling setup (Fig. 1b) is composed
of two Verderflex EZ OEM peristaltic pump heads mounted on custom-made
housing that contains the driving circuits (in-house); two three-way solenoid pinch
valves (PS-1615W 12VDC, Takasago) powered by a driving circuit (in-house); and
segments of silicone tubing (1.6 mm ®j;ernar X 3.2 Mm Deyerna, Cole Parmer)
joined together with wye connectors (1/16”; 5463K51, McMaster-Carr). The
pumps and the valves are controlled by an Arduino UNO microcontroller, which is
itself controlled by custom-written Python code.

Each culture sample is ~ 80 pl. To deliver the sample to the cytometer, we use
pump P3 (Fig. 1b). The sample is first isolated by air and then pushed across the
silicon tubing using phosphate-buffered saline (PBS, Sigma-Aldrich), since the
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pumps work more reliably when pumping liquid. More concretely, the system goes
through the following sequence of steps:

(1) start pumping of liquid culture sample,

(2) once a small amount of the sample is beyond valve V1 (Fig. 1b), switch V1 to
air (sample isolation),

(3) once air is past V2, switch V2 to PBS and push the air 4 culture sample to the
cytometer,

(4) add air behind PBS once the sample reaches the cytometer (isolation from the
next sample). Note, after the above operations the isolated culture sample and
some of the PBS behind it (used for dilution) have reached a polystyrene
sampling tube (ST; 55.484.001, Sarstedt) that is placed under the cytometer
sample introduction port,

(5) pump air into the tube segment behind V1 and

(6) push back remaining sample into the culture.

While pump P3 is working, pump P4 removes the PBS that ends up in ST and
brings it to a waste flask. In this way, both the tubing and the ST are cleaned from
the previous sample. After the current sample is placed under the sample
introduction port, the cytometer software (BD Accuri C6 CFlow Software
1.0.264.15) is operated via a custom automatic clicking program written in Python.
The following steps are performed by the clicking script:

(1) sample acquisition,
(2) data storage and export into FCS format and
(3) cytometer backflush.

After measurement is completed, pump P4 removes all liquid from the ST. Due
to the fact that the used cytometer (BD Accuri C6) is operated by proprietary
software that cannot be manipulated externally, the use of the clicking script
provides a very simple and flexible solution to cytometer control, and is easily
configurable for any cytometer.

With the measurement protocol outlined above, cross-contamination between
consecutive samples is minimal, and data obtained from automatic measurements
are indistinguishable from the data obtained by manual sampling (Supplementary
Note 8). Measurements were obtained every 10 min.

Turbidity control. Cell density during experiments was maintained at an ODgg of
0.1 via a turbidostat composed of two peristaltic pumps (Preciflow, Lambda-
instruments) with an RS-232 interface that is controlled via a microcontroller. A
photodiode (BP104, Vishay Semiconductors) and an infrared LED (LD274-3,
Osram Semiconductors) are used to measure culture turbidity. The infrared LED
has a peak emission wavelength of 950 nm, which is well-separated from the
longest wavelength at which the red-absorbing form of CcaS shows any absorption
(~750nm) (ref. 48). The photodiode measurements are sent to a PI controller
implemented in the microcontroller, which maintains turbidity at a pre-specified
value by operating the peristaltic pumps. A programmable logic controller was
used as the microcontroller for the GFP experiments. It was replaced by an
Arduino for the growth-control experiments, because of its amenability to being
interfaced with a computer. Media is fed and removed from the culture via silicone
tubing (1.6 mm ®j,ernal X 3.2 mMm Deyrerna, Cole Parmer). Additional details are
provided in Supplementary Note 1.

Light-delivery and heating/stirring system. The light-delivery system consists of
a lightproof spherical metal shell (constructed from common household materials),
on which the green (523 nm) and red (660 nm) LEDs (LZ1-30R200 and LZ1-00G100,
LEDengin) and their heat sinks are retrofitted. LED intensity is controlled by an LED
driver (in-house) using high-frequency pulse-width modulation. The system is
integrated with a heated magnetic stirrer (VMS-A, VWR) for heating and stirring.
The culture tube is placed inside a 1,000 ml glass beaker that contains hot metal beads
(Lab Armor), which in turn is placed on the heating surface. The bead temperature is
kept at 37 °C (with the exception of the temperature-shift experiment).

For the growth-control experiments, the heating plate was switched for an
incubation hood (Sartorius Certomat HK), as the latter proved to be more precise.
The improved temperature control is required because the readout of the turbidity
sensor is sensitive to small temperature variations.

Light-treatment protocol. The activity of the CcaS-CcaR system is controlled b
the ratio of green-to-red light intensity under continuous illumination conditions®!”.
We therefore used for all our GFP control experiments a constant red light
illumination, determined as the maximal red intensity at which operation of the
green LEDs at full power still results in the maximal fold change in mean sfGFP
fluorescence. For growth-rate control the green intensity was determined by the
controller, while the sum of green and red LED intensities, normalized to their
respective maxima, was kept constant; in this way, a change in green intensity is
reflected in an opposite change in red intensity.

Green light intensity was kept constant at values determined by the control
algorithms between measurement times (10 min for GFP experiments and 1 min
for growth-control experiments) and was always expressed as a percentage

of the maximum green LED intensity. The duty cycle of the pulse-width modulated
LED current was used as a proxy for LED intensity. These quantities follow a
perfectly linear relationship, as we verified using a light-to-voltage sensor (TSL
235T, TAOS).

Flow cytometry. Cells were measured on a BD Accuri C6 flow cytometer

(BD Biosciences) using an Argon ion laser (488 nm) and FL1 filter (530/30 nm).
During the acquisition phase, between 1,000-2,000 events per second were mea-
sured with a 14 pl per min flow rate. An FSC-H threshold of 11,000 a.u. (typical cell
mean is >30,000 a.u.) was used to remove events due to instrument noise. Every
sample contained 20,000 events collected inside a very wide elliptical gate in the
FSC-A versus SSC-A space (enclosing the whole cluster corresponding to cellular
events), to further eliminate events due to instrument noise. Raw cytometry data
are processed with custom Python scripts as follows: events with fluorescence
below a threshold of 800 a.f.u. (cells have a mean of ~6,000a.f.u.) or outside an
elliptical gate on the FSC-A versus SSC-A scatter plot are discarded. The ellipse is
described by the inequality

3(log,o (FSC4) — 4.25)* 4 0.5(log,(SSC4) — 3.2)* <0.3.

After gating, ~ 15,000 events are left. Fluorescence values are then normalized with
respect to FSC-H, which is known to be positively correlated with cell volume®°.
We thus obtain a quantity that reflects the concentration of sfGFP within each cell.
The sample mean of the normalized single-cell sfGFP measurements is used to
represent the culture fluorescence at the time of measurement. Further details are
provided in Supplementary Note 9.

Description of control algorithms. Both control algorithms are allowed to
change the system input (green light intensity) only when a new output
measurement is available. Between measurement instants, the input to the
controlled system remains constant. This is the simplest instance of so-called
digital control®”.

PI control. Denoting the actual system output at measurement time . by y(t)
and the desired (reference) output at the same time by y,.(#), the error
e(ti) = Yref(tr) — y(tx) is formed. The PI controller contains two terms: one
proportional to the current error value (called the proportional term) and one that
takes into account the past values of the error, formed by the sum of error values
from the beginning of the experiment until the current time (called the integral
term). Thanks to the integral term, PI controllers can achieve zero steady-state
tracking error for constant (or slowly varying) references, as well as perfect
rejection of constant disturbances. Mathematically, the input applied to the system
in the GFP control experiments is given by

u(ty) = min(max(Kpe(t) + ur(t), 0), 100)
where

ur(te) = ur(te—1) + Kre(t)-

The applied input, u(t;), is expressed as a percentage of the maximal green LED
intensity, and is saturated within the physically reasonable interval [0,100]. At the
beginning of the experiment (time f,), the integral term is initialized to u(t;) =0.
The controller contains two free parameters (also called gains), whose choice
affects the behaviour of the closed-loop system (that is, the system

formed by the feedback interconnection of the controlled system and the
controller).

As we noted above, the dynamics of the CcaS-CcaR system feature nonlinearities
that couple the speed of the transcriptional response to the magnitude of input
changes’. Practically, this means that the system becomes almost unresponsive to
small changes in the light input. Therefore, a PI controller tuning that can bring the
output to the desired setpoint is not adequate for fast disturbance rejection, which
typically requires larger sensitivity to output deviations (Supplementary Note 10).
To overcome this limitation, we applied a so-called gain scheduling approach, by
using a first set of PI gains to bring the system to the desired setpoint, and then
switching to a set of larger gains to increase the controller sensitivity to small output
deviations.

For the growth-control experiments, the PI control loop is updated every
minute with a filtered growth-rate measurement p(t,). The proportional and
integral terms are then obtained as follows:

e(t) = pyer — pi(te)
up(tk) = er(tk)
u(tx) = min(max(u; (t 1) + Kre(tx), 0), 60)
g (t) = min(max(up(t) +ur(tx), 0), 100)
u,(tk) =100 — ug(tk)‘
In the above equations, fi,.is the target growth rate, e(t;) the corresponding error.
ug(ti)is the green light input that will be applied to the culture during the next
minute, and #,(t;)is the corresponding value for the red light. Both u, and u, are
expressed as percentage of maximal LED intensity. Finally, the values for u(t;) are
saturated within the interval [0, 60], to prevent the accumulation of too large
positive or negative errors in the integral term and improve the dynamic
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performance of the controller. The controller gains, Kp and K; were chosen by
manual tuning.

Model predictive control. MPC makes control input decisions based on a
dynamical model of the controlled system. We therefore constructed a model
whose states correspond to the means of sSfGFP mRNA (r), immature stGFP (p)
and fluorescent sfGFP (g). Their dynamical evolution is described by a system of
three coupled linear ordinary differential equations:

alr —d. 0 0 r by by 1
L by —dy ke ||p|+]|0 0 { U] :
' g 0 kin - dp g 0 0

According to these equations, sfGFP mRNA is produced at a rate proportional to
the applied input (green intensity), U, and degraded with rate d,. Immature stGFP
is produced from mRNA with rate b,, diluted with rate d, and converted to
fluorescent sfGFP with rate k,,. Even when U=0 (that is, cells are grown under
purely red light or in the dark), the background kinase activity of Cca$ results in a
non-negligible amount of phosphorylated CcaR, and hence a basal transcription
rate b,q.

To arrive at the final MPC model, the above system was converted to a
fold-change model, which describes the changes of the species over their initial
conditions in the un-induced system (U=0). In the fold-change coordinates
(denoted with capital letters), the system equations are

J R —d 0 0o 1[R . b]p,
A=tk —di—ke 0 [[P|+|0 0 H
e 0 d, -d4,| |G 0o o]Lt*

Assuming that the system is at the un-induced steady-state (u=0) at =0, the
initial condition of this system is R(0), P(0), G(0) = 1. With this change in state
coordinates, the new input (now denoted by u) expresses the additional steady-
state sSfGFP fold change that a given green intensity, U, can achieve. For example,
u=1 will lead at a steady-state Ry, P, Gis=2. The new input is related to the
green light intensity through the dose-response curve of the system (the relation
between constantly applied green intensity and steady-state GFP). That is, u = f(U),
with f estimated from a set of steady-state sfGFP measurements at various
green-light-intensity levels (Supplementary Note 11). A maximum-likelihood fit of
the above model to a characterization data set consisting of a step response together
with a few PI control responses, gave the nominal parameter values d, =0.0956,
d,=0.0214, b, = 0.0965 and k,,, = 0.0116.

This continuous-time model was then converted to an equivalent discrete-time
system?® with sampling rate T, = 10 min. Assuming that some disturbances can be
modelled as uncontrolled inputs to the system, we appended an extra input
variable, d(t), to the model®’. In the undisturbed (nominal) system, d remains
constantly at zero. The value of d is estimated at every measurement, to assess
whether the nominal system has been perturbed. Finally, a time-delay equal to one
sampling period (10 min.) was added to the system input, to reflect the fact that
inputs applied at time f can actually affect the system at time ¢+ T (presumably
due to the unmodeled CcaS-CcaR dynamics). In vector form, the discrete-time
model equations are then

x(k+1) = Ax(k) +B[u(k— ) +d(k)}

d(k+1) = d(k)

where, k denotes the number of time steps (that is, multiples of T;) elapsed since
the beginning of the experiment, x = [R P G| and A, B are matrices that
depend on the system parameters. Further details are provided in Supplementary
Note 12.

At every measurement time, only the last model state (G) is measured.
However, to predict the future evolution of the system, the MPC algorithm requires
knowledge of all system variables (R, P, G). Therefore, they need to be estimated
whenever the value of G is updated.

Moreover, not all disturbances can be assumed to enter the dynamics additively,
as d does. For example, a change in the cell-doubling time has to be reflected in a
change of d,. Since MPC is model-based control, its tracking performance largely
depends on the accuracy of the model it uses. A model calibrated for growth in M9
medium at 37 °C will inevitably lead to unacceptable controller performance when
the medium or temperature are changed. This prompted us to implement an
adaptive scheme, where all the system parameters (d,, d,, by, k,, and the
disturbance d) are also estimated at every measurement, to detect changes in the
dynamic behaviour of the system.

Joint state and parameter estimation was performed using a powerful recursive
Bayesian estimation, called particle filtering. The description of the particle filter>!
used in this work is given in Supplementary Note 13.

Our MPC + particle filtering schemes, presented in detail in the Supplementary
Notes 13 and 14, were implemented in Matlab scripts and were evoked by the
master Python script that controlled the execution of each experiment. Despite its
apparent complexity, computation of a light input was performed within 20 s from
the moment of measurement acquisition, using our speed-optimized scripts.

Light-inducible control of MetE. The pJT119b plasmid used in sfGFP control
experiments has some severe limitations that make it inapplicable in the
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growth-control study. As previously reported??, the abundance of the sensor kinase
Cca$ does not remain constant under red and green illumination, most likely due
to transcriptional read-through from the upstream sfGFP gene in pJT119b. Besides
coupling CcaS and GFP expression, the read-through adds unnecessary complexity
to the dynamics of the light-induction system, which ideally should be kept as
simple as possible.

Another limitation of the original pJT119b plasmid is the relatively high
transcriptional leakage observed in red light, which has been attributed to the
presence of a constitutive promoter sequence embedded in the cpcG2 promoter
driving sfGFP*2. By elevating the background expression levels of the system, this
leakiness reduces the dynamic range of the system and limits it usability for control
of downstream gene expression.

To overcome these limitations, we constructed plasmid pSKA413 (Supplementary
Methods) by refactoring the pJT119b plasmid as follows: C-terminally FLAG-tagged
ccaS was transcriptionally fused downstream of a C-terminally FLAG-tagged ccaR
and a T7 transcriptional terminator was added. In all, 59 base pairs corresponding to
a putative constitutive promoter within the cpcG2 promoter region®? were deleted
(Pepe2as9)> and the sfgfp reporter was exchanged for a gfpmut3 reporter with a
synthetic RBS designed using the RBS Library Calculator>.

Plasmid pSKA413 and PCB biosynthesis plasmid pPLPCB(S)>* were introduced
into a modified strain JT2 deleted for endogenous metE and containing a
chromosomal Tn7 insertion of metE under control of the cpcG2459 promoter.

The resulting light-induction system displays an order of magnitude greater
dynamic range in comparison with pJT119b (Supplementary Fig. 3 in
Supplementary Methods), while the expression of the sensor kinase is independent
of the light conditions. A refactored and optimized version of the CcaS-CcaR
system was also presented in ref. 52, which also featured substantially better
induction range and lower transcriptional leakage. In ref. 52 ccaS and ccaR are
located on different plasmids: ccaR lies together with the sfgfp gene on one plasmid,
while cca$ is transferred to the PCB expression plasmid. Both genes are driven by
synthetic promoters and ribosomal-binding sites. In contrast, in our plasmid ccaS
and ccaR are coexpressed in cis under the endogenous ccaR promoter, with their
individual expression levels being independently adjustable through the use of
synthetic ribosomal-binding sites. This results in a more compact construct and
decreased variability in Cca$S and CcaR protein abundance due to varying plasmid
copy numbers. A basic characterization of our refactored system is presented in
Supplementary Methods.

Phenotypic stability of the strain. After prolonged growth under growth-
repressive conditions (24-48 h), the strains appear to gradually lose sensitivity to
light and speed up, most likely due to selection effects stemming from the fact that
they still harbour the CcaS/CcaR system on a medium-copy plasmid.

Growth-rate estimation in the turbidostat. To see how the culture growth rate
can be inferred from the influx pump control signal, 4, consider the equation for the
accumulation of biomass, x, in non-limiting substrate conditions™>:

% = pux — uV ~'x, where u is the growth rate, u the medium inflow rate (ml min ~!)
and V is the culture volume. When x is maintained constant, the growth rate is thus
equal to the dilution rate, uV~1. The doubling time, T, can be computed via

Ty =In(2)u~ "

Under dynamically changing light inputs, the culture growth rate varies in time.
Since growth rate evolves on a timescale of hours, it is much slower than the
establishment of equilibrium inside the turbidostat culture tube. The speed of the
latter is determined by the tuning of the turbidity-regulating PI controller and
ranges from a few seconds to a few minutes. Biomass concentration is therefore
maintained constant by the turbidity loop despite the changes in cell growth, and
the instantaneous growth rate can still be estimated as shown above.

Data availability. All relevant data (design schematics, computer code and
experimental data) are available from the authors on request. Cell growth-control
plasmids and host strain are available at Addgene (#80380, #80381 and #80403).
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