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Pulsatile inputs achieve tunable attenuation of gene
expression variability and graded multi-gene
regulation
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Many natural transcription factors are regulated in a pulsatile fashion, but it remains unknown

whether synthetic gene expression systems can benefit from such dynamic regulation. Here

we find, using a fast-acting, optogenetic transcription factor in Saccharomyces cerevisiae, that

dynamic pulsatile signals reduce cell-to-cell variability in gene expression. We then show that

by encoding such signals into a single input, expression mean and variability can be inde-

pendently tuned. Further, we construct a light-responsive promoter library and demonstrate

how pulsatile signaling also enables graded multi-gene regulation at fixed expression ratios,

despite differences in promoter dose-response characteristics. Pulsatile regulation can thus

lead to beneficial functional behaviors in synthetic biological systems, which previously

required laborious optimization of genetic parts or the construction of synthetic gene

networks.
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The relationship between gene expression and cellular
phenotype lies at the center of many questions in different
branches of biological research. While strong perturbations

of gene expression like knock-outs and overexpression led to a
tremendous increase in our understanding of protein function,
graded gene expression regulation allows us to obtain a quanti-
tative understanding of the expression–phenotype mapping.
Furthermore, conditional and titratable gene expression is of
major importance in biotechnology and synthetic biology. Thus, a
variety of tools for regulating cellular protein levels, such as gene
expression systems based on hormone or light-inducible tran-
scription factors, were developed1. With a few exceptions2–4,
expression levels are regulated by adjusting the strength of an
input, leading to a graded and constant activation of a tran-
scriptional regulator (Fig. 1a, from here on referred to as
amplitude modulation (AM)). In contrast, recent studies have
shown that many natural regulatory proteins, including tran-
scription factors (TFs), exhibit pulsatile activation patterns lead-
ing to a variety of phenotypic consequences5.

Motivated by the occurrence of pulsatile transcription factor
regulation in natural systems, we hypothesized that synthetic gene
expression systems can benefit from such dynamic regulation. To
test this hypothesis, we constructed a fast-acting, and genomically
integrated, optogenetic gene expression system based on the
bacterial light-oxygen-voltage protein EL222 in Saccharomyces

cerevisiae4. Fast kinetics of the optogenetic TF together with the
ability to control light intensity with high-temporal precision
allowed us to tune gene expression using pulsatile TF inputs. In
particular, we performed pulse-width modulation (PWM)3,
meaning that the duration of input pulses is varied to achieve
different gene expression levels, while keeping the period of the
pulses constant (Fig. 1b). The ratio of pulse duration to the period
is referred to as duty cycle. PWM can be performed at different
input amplitudes and periods, providing further options for
dynamic signal encoding to regulate gene expression levels. We
used a mathematical model to identify suitable PWM periods and
then showed experimentally that these can be exploited to tune
gene expression properties. By comparing this PWM approach to
AM, we establish that dynamic encoding of pulsatile signals can
drastically increase the functionality of gene expression systems.

Results
Characterizing an EL222-based expression system in yeast. In
order to regulate gene expression using PWM, we implemented
an optogenetic gene expression system based on a previously
described TF consisting of a nuclear localization signal, the VP16
activation domain6, and the light-oxygen-voltage domain protein
EL222 of Erythrobacter litoralis (VP-EL222)4. Blue-light illumi-
nation triggers structural changes in EL222 leading to homo-
dimerization and binding to its cognate binding site (Fig. 1c). An
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Fig. 1 Characterization of an EL222-based optogenetic gene expression system in S. cerevisiae. a and b Schematic of gene expression regulation by AM
(a) and PWM (b). Input signals (left) lead to TF activation (middle) and expression of a protein of interest (POI, right). c Illustration of the optogenetic
gene expression system. Blue-light triggers VP-EL222 dimerization and transcription of a gene of interest (GOI). d Effect of blue-light illumination on VP-
EL222 mediated gene expression. Strains, with or without the VP-EL222 and a reporter construct (5xBS-CYC180pr-mKate2), were grown either in the dark
or under illumination (460 nm, 350 µWcm−2) for 6 h. Data represent mean and s.d. of three independent experiments. e Graphical representation of the
model describing VP-EL222 mediated gene expression. I represents the light input. See Methods and Supplementary Note 1 for details. f Model-based
analysis of pulsatile TF behavior. To quantify the temporal TF response, we use a tracking score defined by the ratio between the integrated TF activity
during the light pulse and the whole period (top, Supplementary Note 2). This metric is 1 if the TF activity perfectly tracks the input, and equals the duty
cycle if TF activity does not change over time. The heatmap depicts the tracking score as a function of the PWM period and the half-life (HL) of the active
VP-EL222 state (50% duty cycle, 420 µWcm−2). On the right, predicted temporal TF activities are shown for PWM conditions marked on the heatmap
after an initial settling period (see Supplementary Note 2). g Model-based analysis of PWM-mediated protein expression. The heatmap depicts the
integration score (top), quantifying temporal variations of protein levels (Supplementary Note 2), as a function of the PWM period and protein half-life
(10% duty cycle). On the right, the measured time course of FP expression in response to PWM with a 30min period are shown after 390min of induction
at 10% duty cycle. Experiments were performed using mKate2 (red) and a destabilized mCitrine variant8,9 (yellow). Fluorescence is normalized by the
value measured after 390min. Inset differs in y-axis scaling. Data represent the mean and s.d. of two independent experiments
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EL222-responsive promoter was constructed by inserting five
binding sites for EL2224 upstream of a truncated CYC1 promoter
(5xBS-CYC180pr) and was used to drive the expression of the
fluorescent protein (FP) mKate27. For initial characterization, we
measured the expression levels of mKate2 in the dark and after 6
h of blue-light illumination via flow cytometry (Fig. 1d). Illumi-
nation led to a VP-EL222 dependent increase in cellular fluor-
escence of more than 250-fold. In the dark, the presence of
VP-EL222 did not affect gene expression. Neither blue-light
illumination nor VP-EL222 activation affected cell growth or
constitutive gene expression under the experimental condition
and timescales (Supplementary Fig. 1).

In order to achieve a quantitative understanding of the system
and investigate potential PWM regimes, we derived a simple
mathematical model of VP-EL222 mediated gene expression
(Fig. 1e, for details see Supplementary Note 1). The model was
fitted to the data of three characterization experiments, namely a
gene expression time course, as well as dose response curves to
AM and PWM with a period of 7.5 min (Supplementary Fig. 2).
Analyzing the model showed the importance of fast VP-EL222
deactivation kinetics for successful PWM (Supplementary Note 2).
For a fixed duty cycle, slow deactivation rates require long PWM
periods to achieve purely pulsatile TF regulation, which is the
desired regime of operation (Fig. 1f). However, such periods may
result in significant temporal variation of downstream gene
expression/input tracking (Fig. 1g). Here, the half-life of the active
VP-EL222 state was inferred to be lower than 2 min (Fig. 1f,
Supplementary Table 4). Measurements of transcription upon a
blue-light pulse using single molecule fluorescent in situ
hybridization (smFISH) lead to results consistent with the fast
VP-EL222 kinetics (Supplementary Fig. 3, Supplementary Note 1).
For the inferred deactivation rate, the model predicts strongly
pulsatile TF activity for a 30 min PWM period and a 50% duty
cycle, whereas for the same duty cycle TF activity does not return
to baseline when a 7.5 min PWM period is used (Fig. 1f).
Importantly, even for a 30 min period, temporal changes in
protein expression at steady state are expected to be minor for a
wide range of protein half-lives (Fig. 1g, Supplementary Note 2).
We confirmed experimentally that there is no measurable input
tracking for a stable fluorescent protein and relatively little input
tracking for a destabilized FP with a half-live of ≈30 min8,9

(Fig. 1g, see Supplementary Fig. 4 for characterization experi-
ments regarding the destabilized FP). Thus, the fast kinetics of the
VP-EL222-based system together with its tight regulation, and
apparent lack of toxicity, makes it an ideal gene expression tool
for a variety of applications and enables the regulation of protein
levels by PWM.

Pulsatile inputs achieve coordinated multi-gene expression.
Given that most cellular phenotypes are a result of the coordi-
nated regulation of many genes whose protein expression ratios
can be of high importance for achieving these phenotypes10, we
explored the use of AM and PWM for achieving graded expres-
sion of multiple proteins, each at a different level, with a single
gene expression system. Eukaryotic genes are usually mono-
cistronic and thus, promoter libraries are typically used to adjust
relative expression levels11. Hence, we built a set of light-
responsive promoters differing in the promoter backbone and
EL222 binding site number. The resulting promoters showed a
wide range of maximal expression levels with promoters based on
both the GAL1 and the SPO13 backbone exhibiting very low basal
expression (Fig. 2a, Supplementary Fig. 5). However, when we
analyzed the response of two promoters differing in the number
of EL222 binding sites to AM, we found that they show different
dose-response behaviors (Fig. 2b, see Supplementary Fig. 6 for

model fits to the CYC180 promoter with two binding sites). In
contrast, PWM with a period of 30 min resulted in coordinated
expression with an almost linear relationship between the duty
cycle and the protein output (Fig. 2c). Thus, only PWM is
compatible with the use of a simple promoter library for graded
multi-gene expression at constant ratios (Fig. 2d). We observed
the same behavior when both reporters were located in a single
cell (Supplementary Fig. 8a). Furthermore, a similar behavior was
observed when different promoter backbones were used to tune
expression levels (Fig. 2e, Supplementary Fig. 8b–e). We addi-
tionally found that the use of shorter PWM periods resulted in
intermediate levels of coordinated promoter regulation, allowing
for input-mediated tuning of expression ratios (Fig. 2d). This
behavior is qualitatively recapitulated by the simple gene
expression model (Supplementary Fig. 8f), suggesting that it
results from TF activity deviating from a purely pulsatile activity
regime at low PWM periods (Fig. 1f, Supplementary Note 2).
Another possible explanation for this behavior may be promoter-
dependent differences in the expression response to short TF
pulses, which have been observed for natural promoters (see also
Supplementary Note 1 ‘Refitting of promoter-specific model
parameters’)12. We note that Elowitz and colleagues have shown
that frequency modulation of TF activity can coordinate multi-
gene expression in S. cerevisiae13. Thus, our work demonstrates
how we can learn from natural systems to better regulate gene
expression in synthetic systems using simple strategies13. We
further note that linear dose-response curves are exclusive to
PWM regulation but can also be achieved for constant inputs by
the construction of negative feedback loops14.

Reducing and tuning expression variability. While, we have so
far only analyzed the average response of cells to input signals,
gene expression can exhibit a substantial amount of hetero-
geneity15. For many applications, precise single cell regulation of
gene expression is desirable16. However, the ability to tune
variability while keeping the mean expression fixed may allow for
the analysis of its phenotypic consequences15,17,18. To date,
variability regulation was achieved by the construction of syn-
thetic gene networks14,19–22 —namely feedback loops14,20 and
cascades19,21,22— as well as the tuning of promoter features, such
as TATA boxes17,19. Variability reduction via frequency mod-
ulation of TF activity was previously proposed based on theore-
tical results23. In contrast, experimental work in S. cerevisiae has
shown that oscillatory dynamics of the TF Msn2 can result in
increased expression variability in a promoter-dependent
fashion12.

For the synthetic gene expression system, PWM led to reduced
cell-to-cell variability in protein levels compared to AM for the
same mean expression (Fig. 3a). Furthermore, changing the
PWM period enabled tuning of expression heterogeneity with a
single input and no change in network architecture (Fig. 3a). In
order to investigate the mechanism behind this variability
reduction, we performed a dual reporter experiment (see
Methods for details). This assay allows for the decomposition of
expression variability stemming from stochastic events at the
promoter level (intrinsic) and global differences between cells
(extrinsic)24,25. We found that PWM reduces both extrinsic and
intrinsic variability (Fig. 3b, c). However, for most expression
levels, extrinsic variability is the dominant source of heterogeneity
in the synthetic expression system. Given that TF variability is
thought to be a major determinant of extrinsic variability26, we
hypothesized that PWM leads to lower gene expression hetero-
geneity by operating in a promoter-saturating regime, where
transmission of TF variability to gene expression output is
minimal (Fig. 3d).
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To approximate this phenomenon with our simple mathema-
tical model, we performed simulations in which we drew TF
concentration from a log-normal distribution describing the
single-cell distribution of a mCitrine-tagged27 version of VP-
EL222 (Supplementary Note 3, Supplementary Fig. 11a). This
model can qualitatively recapitulate the experimental data (Fig. 3e,
Supplementary Fig. 11b, c). The model suggests that the ability to
tune variability using the PWM period stems from active VP-
EL222 concentrations residing at intermediate levels for extended
time intervals at low PWM periods and short duty cycles (Fig. 3d,
f, see also Supplementary Note 2). We further showed
experimentally that PWM reduced the slope of the correlation
between VP-EL222 expression levels and mKate2 output (Fig. 3g,
Supplementary Fig. 11d). Next, we expressed VP-EL222 from a
centromeric plasmid to increase TF variability by introducing
plasmid copy number variation (Supplementary Fig. 12)9. Under
these conditions, AM led to a wide-spread multi-modal protein
distribution at intermediate expression levels (Fig. 3h). In
contrast, PWM resulted in the merging of these distributions.
Thus, the use of PWM does not only reduce heterogeneity as
measured by the CV but may also lead to qualitatively different
distributions by attenuating the effects of TF variability on
downstream gene expression.

A stochastic model recapitulates expression variability. Using a
simple ODE-based gene expression model we were able to show
that the proposed mechanism of PWM-mediated noise reduction
(by attenuation of upstream TF variability) stands in qualitative
agreement with our experimental data. However, the model
overestimated gene expression variability and did not consider
intrinsic variability, which was significant at low expression levels
(Fig. 3b, e, Supplementary Note 3). We thus sought to investigate
whether a slightly more detailed, stochastic model can quantita-
tively recapitulate the experimentally observed expression varia-
bility (see Supplementary Note 4 for details regarding the
modeling approach). To do so, we calibrated fluorescence values
to cellular protein numbers using reference strains28 (Supple-
mentary Fig. 13a, Supplementary Note 4). As a dynamic source of
VP-EL222 variability, we explicitly model its transcription and
translation, meaning we model the extrinsic variability of the
target gene as intrinsic variability of an upstream TF29 (Fig. 4a,
Supplementary Fig. 13b, and Supplementary Note 4). Prompted
by our recent observation that VP-EL222 mediated transcription
occurs in bursts whose timing as well as duration are affected by
VP-EL222 activity30, we modeled reporter gene transcription
based on a two-state promoter model25, with VP-EL222 activity
positively regulating promoter activation (switching from a

CYC180

CYC180

CYC180

CYC180

GAL1 GAL1

Time

In
pu

t

Data
Model

(fit)
CYC

CYC

a b

SPO13

AM
PWM 7.5 min period
PWM 15 min period
PWM 30 min period

R
at

io
 m

ea
n 

m
K

at
e 

flu
or

es
ce

nc
e

5x
B

S
-C

Y
C

18
0 

/ 2
xB

S
-C

Y
C

18
0

Duty cycle

Light intensity

d
CYC180CYC180 CYC180

e

Time

In
pu

t 30 min

Data
Model
(pred.)

CYC

CYC

c

153x

98x

53x

257x

21x

23x

GAL1 GAL1

R
at

io
 m

ea
n 

m
K

at
e 

flu
or

es
ce

nc
e

5x
B

S
-C

Y
C

18
0 

/ 5
xB

S
-G

A
L1

CYC180

4x

Mean mKate2 fluorescence 5xBS(AU)

Mean mKate2 fluorescence (AU)

0 20,000 40,000

0
0

1

2

2

4

6

8

10

3

4

5

20,000 40,000 0 20,000 40,000

0 100 200 300 400

0.00

0.25

0.50

0.75

1.00

0.00

0 25 50 75 100

0.25

0.50

0.75

1.00

Light intensity (μW cm–2)

R
el

at
iv

e 
m

K
at

e2
 fl

uo
re

sc
en

ce

R
el

at
iv

e 
m

K
at

e2
 fl

uo
re

sc
en

ce

Duty cycle (%)

Dark

Light

Mean mKate2 fluorescence 5xBS(AU)

Fig. 2 Coordinated multi-gene regulation using dynamic inputs. a A promoter library for gene expression at various expression levels. Schematics represent
the different promoters. Yellow boxes represent EL222 binding sites and orange boxes represent partial sequences of yeast promoters. Strains, expressing
mKate2 under the control of the respective promoter, were cultured for 6 h in the dark or the presence of blue light (350 µWcm−2). The average cellular
mKate2 fluorescence was measured using flow cytometry. Data represent the mean and s.d. of three independent experiments. b and c Dose-response of
two promoters to AM (b) and PWM (c). Strains expressing mKate2 under the control of either a CYC180 promoter with five (circle, 5xBS) or two (triangle,
2xBS) VP-EL222 binding sites were grown under the illumination conditions depicted on the x-axis for 6 h. The light intensity and period for PWM were
420 µWcm−2 and 30min. Mean cellular fluorescence measurements were normalized to be 0 in the dark and 1 at the highest input level to allow for easy
comparison. Non-normalized values are shown in Supplementary Fig. 7. Data represent the mean and s.d. of three independent experiments. Lines
represent model fits or predictions. d Relative gene expression levels for different induction condition. Strains (as in b and c) were grown under the same
illumination conditions (light intensity and duty cycle) as shown in b and c. In addition, the effect of the PWM period on coordinated expression was
explored. The ratio of mKate2 expression from the 5xBS and the 2xBS promoter is plotted against the mKate2 expression from the 5xBS promoter for the
same illumination conditions. The dashed line represents this ratio at constant illumination with a light intensity of 420 µWcm−2. Data represent the mean
and s.d. of three independent experiments. e Relative gene expression levels between a CYC180 and GAL1 based promoter with five binding sites for
different induction condition. Experiments were performed as described in (d). Data represent the mean and s.d. of three independent experiments for the
CYC180-based promoter and two independent experiments for the GAL1-based promoter
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repressed to a transcription competent state) and negatively
regulating promoter deactivation (Fig. 4a, Supplementary
Note 4).

By simulating the dual-color reporter experiment we found
that this model can reproduce both intrinsic and extrinsic
variability (Fig. 4b–d). Importantly, extrinsic variability is
predicted based on characteristics of VP-EL222/the upstream
TF (in particular protein copy number, variability, target dose-
response curve, and degradation rate, see Supplementary
Note 4) without additional parameter tuning, further increas-
ing the support of the proposed mechanism of PWM-
mediated variability reduction. Interestingly, the intrinsic
variability behavior could not be reproduced by a model in
which VP-EL222 directly affects the transcription rate
(Supplementary Fig. 13c, d), suggesting that pulsatile TF
activity may be capable of reducing variability resulting from
transcriptional bursting23. We note, however, that future
studies using more appropriate readouts, such as live-cell
measurements of transcription30,31, are required to study this
aspect in detail.

We additionally found that the model nicely predicted the
expression variability under different PWM periods (Fig. 4e),
PWM amplitudes (Supplementary Fig. 13e), and for different

reporter protein degradation rates (Supplementary Fig. 13e),
which may open the way to a model-predictive regulation of
expression mean and variability.

Mapping enzyme expression levels and variability to growth.
For most genes, it remains largely unknown to which degree
variability in their expression affects phenotypic behavior. This
lack of understanding partly stems from difficulties in tuning
gene expression variability for the same mean level18, despite
recent progress in this area22. Using the properties of AM and
PWM regulation, we sought to analyze how variability in the
expression of the metabolic enzyme Ura3, which is required for
survival of S. cerevisiae in uracil-free media32, affects cellular
growth at different expression levels. We found that mCitrine-
tagged Ura3p is stable and that both AM and PWM-mediated
expression does not affect cell growth in uracil rich media
(Supplementary Fig. 14a, b). Thus, differences in dose-response
curves between AM and PWM can be expected to stem from
differences in variability (Supplementary Fig. 14c).

We found that, upon a shift from uracil-rich to uracil-free
medium, the dose response of mean expression to growth
depends on expression with tight regulation resulting in maximal
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growth with less enzyme expression (Fig. 5a, Supplementary
Fig. 14d–f). The data further suggest that variability can result in
increased growth at very low mean expression levels. We thus
show that by comparing AM to PWM regulation, the influence of
expression variability on cellular phenotypes can be investigated.
In addition to its importance in basic research18, such analysis
may be relevant for the adjustment of optimal protein levels for
synthetic biology applications33 in which metabolic burden is
non-negligible34. Furthermore, our results indicated that expres-
sion variability in a cell population may disguise the steepness of
dose-response curves on the single-cell level (Supplementary
Fig. 14f)35, thus exemplifying the importance of precise regulation
for the analysis of expression–phenotype relationships. To this
effect, we found that the observed behavior is consistent with a
simple model, in which cellular growth depends on URA3
expression in an all-or-none fashion (Fig. 5b).

Discussion
We present a highly inducible, fast-acting optogenetic expression
system for S. cerevisiae which enables the regulation of protein
levels by PWM. Learning from the use of pulsatile regulation in a
natural system13, we show that PWM enables the use of simple
promoter libraries and a single input for the graded and coor-
dinated regulation of multiple genes at different expression levels.
We further propose a novel method for variability reduction and
tuning in gene expression systems based on pulsatile inputs.
Thus, the simple use of dynamic inputs may replace laborious
optimization of promoter dose-response curves36 and construc-
tion of gene networks14,20,22 for synthetic biology and basic
research applications1,18. Recently, a similar VP-EL222-based
optogenetic expression tool was employed to regulate metabolic
fluxes in a biotechnological setting37 and it will be interesting to
see whether the properties of PWM regulation described here can
be beneficial for bioprocesses.

Our combined experimental and modeling work identified
the attenuation of upstream TF variability as a mechanism
behind PWM-mediated expression noise reduction and tuning.
Not only could this mechanism be relevant for the control of
single genes but also for the precise regulation of gene
expression networks38. We further revealed a reduction of
intrinsic gene expression noise by pulsatile TF activity23;
however, the exact source and the requirements for such noise
reduction remain to be studied in more detail. Our results
suggest the possibility that variability reduction may be a
functional role of pulsing in cellular signaling5. In contrast,
Hansen and O’Shea found that information transmission via
frequency modulated signaling is less reliable than AM sig-
nalling for the stress-responsive yeast TF Msn239. This dis-
crepancy may result in part from differences in the dynamics of
the applied inputs. However, it may also result from differences
between natural and synthetic promoters40 as well as the
activity of the Msn2 and the viral VP16 activation domain,
which could both affect the transcriptional response to pulsed
inputs. It thus remains to be seen whether pulsing-mediated
variability attenuation can be identified in natural systems.

We found that PWM can be employed for proteins with relatively
short half-lives (Fig. 1g). At the same time, protein (and mRNA)
stability sets a limit on relevant PWM periods (Fig. 1g, Supplemen-
tary Note 2). A consequence of this trade-off is that the benefits of
PWM are less pronounced at low induction levels that require the use
of short input pulses (see for example the variability reduction for a
10% duty cycle in Fig. 3a). In comparison, a synthetic feedback circuit
that does not suffer from this complication was shown to enable
expression with low variability over very wide ranges of expression
levels14. One possible way to further extend the functional range of

PWM would be to use an optogenetic TF with an even faster dark-
reversion rate41 (Supplementary Note 2) or an expression system
whose activity can be regulated bidirectionally with two separate
inputs42. Notably, the mechanisms behind the benefits of pulsatile
regulation are not specific to VP-EL222 and should be widely
applicable to systems based on fast-acting regulators in a variety of
organisms. For example, attenuation of TF variability may be
important for the precise and graded control of endogenous tran-
scription using light-inducible CRISPR-Cas9 systems43 in mamma-
lian cells, where transient transfections are often performed.

Methods
Plasmid construction. E. coli TOP10 cells (Invitrogen) were used for plasmid
cloning and propagation. Sequences and details of all DNA constructs used in this
study can be found in Supplementary Note 5. All plasmids used in this study are
summarized in Supplementary Table 1. Plasmids were constructed by restriction-
ligation cloning using enzymes from New England Biolabs (USA).

All PCRs were performed using Phusion Polymerase (New England Biolabs).
The EL222-based transcription factor under control of the ACT1 promoter was
cloned in an integrative vector based on the pRS vector series44 and a low-copy
plasmid (pRG215)9. Constructs with light-inducible promoters were cloned in
pFA6a-His3MX645. All constructs were verified by sanger sequencing (Microsynth
AG, Switzerland).

Yeast strain construction. All strains are derived from BY4741 and BY4742
(Euroscarf, Germany)46. All strains used in this study are summarized in Supple-
mentary Table 2. Transformations were performed with the standard lithium
acetate method47 and selection was performed on appropriate selection plates. The
basis of the majority of strains used in this study are DBY41 and DBY42. Both
strains express VP-EL222 from the ACT1 promoter and were generated by trans-
forming PacI digested plasmid pDB58 into BY4741 and BY4742, respectively.
Plasmid integration was verified by function. All light-inducible promoter con-
structs were PCR amplified using primers for the integration into the HIS3 locus
(Primers HIS3_integration_fwd/rv, Supplementary Table 3). Integration of reporter
constructs was verified via PCR and function. Promoter sequences of strains shown
in Fig. 2a were verified by sequencing. Reference strains (Supplementary Note 4)
were constructed by tagging the respective proteins (Supplementary Table 5) in
BY4741 with mCitrine. PCR amplicons used for transformation were amplified
from a mCitrine containing pFA6a-His3MX6-based plasmid45 using primers pre-
sented in Supplementary Table 3. Diploid strains were generated by mating and
selection by growth on SD plates lacking both L-Lysine and L-Methionine.

Media and growth conditions. All experiments were performed in synthetic
medium (SD; LOFLO yeast nitrogen (ForMedium), 5 g/L ammonium sulfate, 2%
glucose, pH was adjusted to 6.0). All experiments were performed in 25ml glass
centrifuge tubes (Schott 2160114, Duran) stirred with 3 × 8mm magnetic stir bars
(Huberlab) using a setup comprised of a water bath (ED (v.2) THERM60, Julabo) set
to 30 °C, a multi position magnetic stirrer (Telesystem 15, Thermo Scientific) set to
900 rpm, a 3D printed, custom-made 15-tube holder, and custom-made LED pads
(460 nm peak wavelength) located underneath the culture tubes. A white diffusion
filter (LEE Filters) was placed between the LED and the culture tube to allow for even
illumination. LED intensity was measured at 4 cm distance from the light source using
a NOVA power meter and a PD300 photodiode sensor (Ophir Optronics).

Flow cytometry. All experiments except growth and smFISH were performed in
the following way.

Cultures were grown overnight starting from single yeast colonies, subcultured in
fresh medium and grown for at least 16 h in the dark while maintaining an optical
density at 700 nm (OD700)48 lower than 0.4. At the start of the experiment, cells were
diluted to an OD700 of 0.005 in 4ml of medium. Before measurement, cell samples
were incubated in SD media with 0.1mg/ml cycloheximide for 3.5 h at 30 °C to
ensure full fluorescent protein maturation. The maturation step was omitted for a
destabilized version of the Citrine FP. Samples were analyzed using a LSRFortessaTM

LSRII cell analyzer (BD Biosciences, Germany). To measure mKate2 fluorescence, a
561 nm excitation laser and a 610/20 nm emission filter and for mCitrine, a 488 nm
excitation laser and a 530/11 nm emission filter were used. Data were analyzed using
R (3.3.2) with the flowCore package49. Cells were gated based on forward and side
scatter to remove debris and cell aggregates. For strains containing centromeric
plasmids, a budded cell population was selected by gating based on the forward and
side scatter width50. We found that this population shows a higher percentage of
responsive cells, which likely results from a higher degree of plasmid retention
(Supplementary Fig. 12c,d). Strong outliers were removed from the data as follows:
First, the fluorescence values were log-transformed. Outliers were defined as data
points with an absolute deviation from the fluorescence distribution median of greater
than threefold of the median absolute deviation.
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For the analysis of gene expression heterogeneity, fluorescent levels were
normalized by side scatter area to reduce the effect of cell size (see Supplementary
Fig. 9)51. At least 1000 cells and typically 5000 cells were analyzed.

Fluorescence activated cell sorting and plating assay. For strains containing
centromeric VP-EL222 plasmids, we found that a subpopulation of yeast cells
defined based on forward and side scatter showed a higher percentage of light-
responsive cells than the whole population. To analyze the origin of the difference
in responsiveness, we compared plasmid retention/LEU2 marker expression in
these population. Cells (strains DBY112 (VP-EL222 on centromeric plasmid) and
DBY43 (stable integration of VP-EL222)) were grown as described above in SD
medium lacking L-Leucine (SD -LEU) for the flow cytometry experiments. Cells
were then sorted based on forward and side scatter (Supplementary Fig. 12c) into 4
ml of fresh SD -LEU media (40,000 cells per gate) using a BD InfluxTM cell sorter
(BD Biosciences, Germany). Cells were then diluted to a cell concentration of 1000
cells per ml and 100 µl were plated on SD and SD -LEU plates. After 3 days of
growth, plate images were acquired and colonies were counted using the “Spot
Detector” plugin in Icy52,53 (see Supplementary Fig. 12d for results).

Modeling. The ODE modeling and parameter fitting is described in detail in
Supplementary Note 1 (see Supplementary Table 4 for model parameters). The
model consists of the following three ordinary differential equations describing
VP-EL222 activation (1), VP-EL222 dependent mRNA expression (2), and
protein expression (3):

dTFon
dt

¼ I � kon � TFtot � TFonð Þ � koff � TFon; ð1Þ

dmRNA
dt

¼ kbasal þ kmax �
TFnon

Kn
d þ TFnon

� kdegR �mRNA; ð2Þ

dProtein
dt

¼ ktrans �mRNA� kdegP � Protein; ð3Þ

Simulations and model fitting were performed using Matlab (R2014a, Mathworks).
Stochastic/stochastic hybrid modeling is described in detail in Supplementary

Note 4. Due to high copy numbers of the reporter protein, we used a hybrid
modeling approach in which reporter protein translation and degradation was
simulated using an ODE and all other reactions were simulated using the stochastic
simulation algorithm (SSA)54. We used a custom implementation (provided by Jan
Mikelson, ETH Zürich) of the SSA simulation combined with an ODE solver
(CVODE package for C++). Since the stochastic part does not depend on the
continuous dynamics, the simulation performed the common SSA steps for the
stochastic part and reinitialized the ODE solver after each reaction to compute the
deterministic dynamics in between the stochastic reactions.

Dual-reporter experiments. Dual-reporter experiments were performed using
the diploid strain DBY110. This strain was constructed by mating DBY43 and
DBY104, expressing mKate2 and mCitrine from 5xBS-CYC180pr integrated
into the HIS3 locus. The equivalence of both reporter genes is shown in Supple-
mentary Fig. 10. mCitrine fluorescence values were adjusted by multiplication
with a constant in order to equate the mean values of mCitrine and mKate2
fluorescence measurements. Using the formalism introduced in ref. 24, total
variability was decomposed into extrinsic and intrinsic variability using the fol-
lowing equations:

CV2
int ¼

r � yð Þ2� �

2 rh i yh i ; ð4Þ

CV2
ext ¼

ryh i � rh i yh i
rh i yh i ; ð5Þ

Here, r and y are vectors whose elements are cellular fluorescence values for
mKate2 and mCitrine, respectively. Angled brackets represent population means.

Measuring the influence of light on cell growth. Cells were initially grown as
described for flow cytometry experiments. At the start of the experiment, cultures
were diluted to an OD700 of 0.01 in a total volume of 6 ml. Cells were grown for 2 h
before starting blue-light illumination. Subsequently the OD700 was measured every
hour for 6 h and the growth rate was calculated by performing linear regressions on
log-transformed OD-data. Growth curves and analysis results are show in Sup-
plementary Fig. 1.

Measuring the effect of URA3 on cell growth. In order to measure how Ura3p
expression affects cell growth, DBY125 expressing both mCitrine and Ura3p from
two separate 5xBS-CYC180 promoters was initially grown as described for all other
flow cytometry experiments (see above). Cells were then diluted to an OD of 0.0001

in SD medium and illuminated for 14 h under the following light conditions. AM:
56, 77, 98, 119, 133, 162 µW cm−2 light intensity. PWM: 420 µW cm−2 light
intensity; 30 min period; 3.33, 6.66, 10, 13.33, 20, 33.33% duty cycle.

Cells were then washed with SD medium lacking L-uracil and resuspended in 4
ml of this medium. Cells were further grown under the same illumination
conditions and samples were analyzed every hour by measuring the cell count per
60 µl medium using a CytoFLEX flow cytometer (Beckman Coulter) for 5 h starting
1 h after washing. Growth rates were calculated by performing linear regressions on
log-transformed count-data. Fluorescence measurements were performed after the
washing step using flow cytometry as described above.

Single molecule FISH experiments. For single molecule FISH experiments,
DBY89 was grown from a single colony to saturation in SD medium. Cultures were
diluted to reach an OD700 of 0.4 at the start of the experiment the next day. For
each time point, 4 ml cell culture were transferred to 25 ml glass centrifuge tubes
stirred with 3 × 8mm magnetic stir bars. Illumination was performed with a light
intensity of 350 µW cm−2 for 20 min.

Cell fixation and probe hybridization was performed as described previously55.
Briefly, after 0, 10, 20, 30, 40, and 60min (where 0min marks the start of
illumination), cells were fixed for 45min after adding 400 µl of 37% formaldehyde
(Sigma-Aldrich) to the culture medium. Spheroplasting was performed using a final
Lyticase (Sigma-Aldrich) concentration of 50 units/ml. The progression of
spheroplasting was monitored under the microscope. Cells were stored in 70%
ethanol at 4 °C overnight. Hybridization was performed using multiple probes
complementary to the PP7 SL and singly labeled with CY3 at a 0.1 µM concentration
(synthesized by Integrated DNA Technologies, sequences are listed in Supplementary
Table 3)56. Cells were stained with DAPI (0.1 μg/ml in PBS, Sigma-Aldrich), attached
to Poly-D-Lysine treated coverslips, and slips were mounted on slides using Prolong
Gold mounting medium (Invitrogen).

Microscopy setup. All images were taken with a Nikon Ti-Eclipse inverted
microscope (Nikon Instruments), equipped with a Plan Apo Lambda ×100
Oil objective (Nikon Instruments), Spectra X Light Engine fluorescence excitation
light source (Lumencor, USA), pE-100 brightfield light source (CoolLED Ltd., UK),
and CMOS camera ORCA-Flash4.0 (Hamamatsu Photonic, Switzerland). The
camera was water-cooled with a refrigerated bath circulator (A25 Refrigerated
Circulator, Thermo Scientific). The microscope was operated using NIS-Elements
software. Z-stacks consisting of 31 images with a step size of 0.1 µm were taken
for CY3 (Excitation: 542/33, Emission: 595/50) and DAPI (Excitation: 390/22,
Emission: 460/50). Phase contrast images were taken at the reference point.

Microscopy image analysis. The image analysis procedure was performed using
custom Matlab scripts and consists of three steps: segmenting individual nuclei
(based on DAPI images), locating fluorescent spots in the nuclear regions, and
quantifying the intensity of these spots.

Nuclei were first enhanced by using the Difference of Gaussians algorithm.
Nuclear regions were then segmented by manually optimized thresholding.
Detected regions that were too big or small to represent nuclei were removed. For
each nuclear region, a Difference of Gaussian algorithm was used to enhance spots
in the CY3 images and spots were identified using thresholding. In order to
quantify the intensity of the nuclear spots, the sum of a two-dimensional Gaussian
function and a 2D-plane was fitted in a square area around the identified spot with
an edge length of 19 pixels. If no spot was detected, the same procedure was
performed at the center of the nuclear region. Spot intensity was then defined as
the integral of the Gaussian function. For each nucleus/cell, the spot with the
highest intensity was defined as the transcription site.

Data availability. Data, plasmids, strains are available from the corresponding
author upon request.
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