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Characterization and mitigation of gene expression
burden in mammalian cells
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Despite recent advances in circuit engineering, the design of genetic networks in mammalian

cells is still painstakingly slow and fraught with inexplicable failures. Here, we demonstrate

that transiently expressed genes in mammalian cells compete for limited transcriptional and

translational resources. This competition results in the coupling of otherwise independent

exogenous and endogenous genes, creating a divergence between intended and actual

function. Guided by a resource-aware mathematical model, we identify and engineer natural

and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene

expression burden. The implementation of these circuits features the use of endogenous

miRNAs as elementary components of the engineered iFFL device, a versatile hybrid design

that allows burden mitigation to be achieved across different cell-lines with minimal resource

requirements. This study establishes the foundations for context-aware prediction and

improvement of in vivo synthetic circuit performance, paving the way towards more rational

synthetic construct design in mammalian cells.
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Mammalian synthetic biology facilitates the study of
diverse biological processes including gene regulation1,
developmental patterns2, evolution3, and cancer pro-

gression4. More recently, it has gained clinical relevance, offering
powerful new tools for the engineering of recombinant protein-
producing cells5 and for the creation of novel cell-based therapies
for clinical use6–8. Prior to cell engineering, the synthetic parts
and the behavior of their resulting devices are tested and char-
acterized via transient transfection in the desired mammalian cell
lines. However, often the discrepancy between expected and
actual behavior leads to numerous design–build–test–learn
iterations9,10, which are particularly expensive and time con-
suming11 in mammalian cells.

At the core of the problem is the poor predictability of gene
expression10 in transfected cells arising from the dependence of
gene expression on the cellular context. In particular, the often
overlooked dependence of exogenous genetic circuits on limited
host resources that are shared with endogenous pathways fre-
quently leads to unanticipated and counterintuitive circuit
behaviors12. In bacterial cells, substantial progress towards
increasing the predictability of gene expression has been made by
showing that exogenous genetic material imposes a significant
burden, resulting in decreased growth rates and degraded cellular
performance13. This has been attributed to the diversion of the
pool of resources available for gene expression14,15 towards
transcription and translation of the newly introduced synthetic
payloads. These observations prompted the development of
models that consider gene expression in a resource-limited con-
text16–19 and led to approaches for mitigating the impact of
resource burden in bacteria20,21. Analogous studies in Sacchar-
omyces cerevisiae showed that transcription and translation are
limiting processes22. For example, the use of potent transactiva-
tors—such as the DOX-inducible rtTA—causes a squelching
shortage of general transcription factors for native gene expres-
sion in yeast23. In mammalian cells, while performance short-
comings of synthetic circuits due to transactivator dosage and
plasmid uptake variation24 have been observed, a deeper under-
standing of the problem of resource burden and methods for its
mitigation are still missing. Competition for endogenous
resources can have detrimental effects on basic and translational
biology. For instance, in studies based on transient DNA
expression, genes that are used to normalize the results might be
subject to resource-dependent expression coupling (e.g. protein
levels measured by flow cytometry are usually normalized to the
expression levels of the transfection marker, which is also used as
a measure of transfection efficiency).

Here, we investigate the burden imposed by transiently
expressed synthetic circuits on host cells (Fig. 1). Through the
design of genetic constructs that allow us to uncouple tran-
scription and translation processes, we separately study tran-
scriptional and translational burden caused by cellular resource
sharing. In particular, we engineer several regulatory circuits
composed of a tunable load, called X-tra (eXtra Transgene),
which we genetically express in the host cell in varying amounts.
We then measure the impact of this tunable load on a “sensor”
gene, which we refer to as the capacity monitor (Fig. 1a). We
demonstrate in different mammalian cell lines that the sharing of
transcriptional and translational resources in the host cell can
tightly couple otherwise independently co-expressed synthetic
genes and lead to trade-offs in their expression (Fig. 1a). To
enhance the predictability of synthetic devices in mammalian
cells, we explicitly incorporate these load-sharing effects in a
general mathematical model in which we replace the rates of
resource-dependent reactions with adjusted effective rates
(Fig. 1b). This framework follows ideas originally used to capture
the competitive interaction of multiple inhibitors with an

enzyme25 and has been applied to describe shared cellular
resources in previous studies16–19,26. We demonstrate the use-
fulness of this modeling framework by showing that it success-
fully recapitulates the non-monotonic dose–response behavior of
a simple inducible gene expression system observed in Lillacci
et al.24. Additionally, we investigate the role of post-
transcriptional regulators, like RNA-binding proteins (RBPs)
and microRNAs (miRNAs), in mitigating the impact of burden-
induced coupling and find that both are able to reallocate
resources, making them candidates for use in burden-mitigation
circuits. Using these observations, and guided by our modeling
framework, we identify the incoherent feedforward loop (iFFL) as
a network topology that is particularly effective at resource bur-
den mitigation, and then we use endogenous and synthetic
miRNA regulation to engineer iFFL-based, burden-mitigating
synthetic circuits (Fig. 1c). While miRNA-based iFFL circuits
have been previously constructed and proposed to buffer gene
expression against noise27,28 and fluctuations in external inducer
concentration29, in this study we demonstrate that they also act to
rescue the expression level of genes of interest despite changes in
available cellular resources due to the loading effects of transgene
constructs (Fig. 1c). Our findings pave the way to more realistic
output predictions and optimal synthetic construct design in
mammalian cells.

Results
Genetic circuits compete for limited shared resources. We
reasoned that competition for finite cellular resources would
introduce an indirect coupling in the expression levels of two
otherwise independently expressed genes. To test this, we co-
transfected HEK293T cells with two constitutively expressed
fluorescent proteins mCitrine and mRuby3 driven by EF1α pro-
moters, in molar ratios ranging from 1:4 to 4:1, for a total of 50 ng
(low) or 500 ng (high) of encoding plasmid (Fig. 2a). The com-
petition for limited resources is expected to shape gene expression
as presented in Fig. 2a, according to the modeling framework that
will be introduced in Fig. 4a (model described in Supplementary
Note 2). As expected, the total amount of 500 ng of encoding
plasmids results in a dramatic drop of encoded-gene expression
as compared to 50 ng (Fig. 2a, right). Furthermore, in both
experimental conditions mCitrine and mRuby3 fluorescence
levels are negatively correlated; the higher the amount of
expressed mCitrine, the lower that of mRuby3 and vice versa
(Fig. 2a, right); this correlation was also more severe for 500 ng of
transfected plasmid than for 50 ng.

We demonstrated that the negative correlation is promoter
independent: using a CMV and a PGK promoter30 that have
different expression strength in HEK293T and H1299 (Supple-
mentary Fig. 1a), we observed analogous outcomes (Supplemen-
tary Fig. 1b–e). Further, by combining different molar ratios of
mCitrine and mRuby3 encoding plasmids driven by two
promoters of different strengths (EF1α or EFS) a similar behavior
to Fig. 2a was observed (Supplementary Fig. 2). Finally, as many
synthetic circuits rely on tunable gene expression, we next tested
resource competition on transcriptional inducible systems, by
modulating X-tra repression with a Doxycycline (Dox)-repressed
promoter (Fig. 2b) at different concentrations of Dox (from 0 to
1 μg/mL) while keeping capacity monitor amounts constant
(Fig. 2b, left). Consistent with previous results, we observed that
increased repression of X-tra corresponds to increased capacity
monitor levels (Fig. 2b, right).

To exclude any bias of fluorescent protein expression on
resource competition, we transfected a plasmid encoding a
human codon optimized variant of the bacterial σ-factor sigW in
increasing amounts with a fixed concentration of the mCitrine
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capacity monitor plasmid, and demonstrated similar behavior to
fluorescent protein expression (Supplementary Fig. 3).

Finally, to avoid any experimental confounds as the source of
our observations, we showed that neither cell seeding nor nutrient
supply had any apparent effect on the expression levels of the two
genes, one of which was titrated whereas the second was held at a
constant copy number (Supplementary Fig. 4).

These proof-of-concept experiments demonstrate that (i) gene
expression in mammalian synthetic circuits is connected even in
the absence of direct regulation and (ii) expression of exogenous
genes is limited by cellular resource availability.

Transcriptional and translational resources are limiting. Since
several different resource pools could be responsible for the observed
effects described above, we set out to characterize the individual
contributions of transcriptional and translational resource limitation
to cellular burden in HEK293T and H1299 cells (Fig. 2). To evaluate

potential limitations in transcriptional resources and the consequent
gene competition for mRNA expression, we quantified mRNA levels
in cells expressing X-tra/capacity monitor molar ratios from 1:1 to
2.5:1 in H1299 cells for a total of 500 ng of plasmid DNA (corre-
sponding protein data in Supplementary Fig. 8a). We observed that
as the X-tra mRNA increased, the capacity monitor mRNA levels
decreased (Fig. 2c), supporting the hypothesis that shared tran-
scriptional resources are indeed a limiting factor in mammalian
synthetic gene co-expression.

To investigate whether the expression of endogenous genes is
also affected by heterologous genetic payloads, we transfected
H1299 cells with a plasmid encoding for EGFP and mKate under
the control of a bidirectional promoter. We then sorted
transfected cells according to high and intermediate levels of
fluorescent markers as well as non-transfected cells (absence of
fluorescence) (Supplementary Fig. 5). We then quantified the
mRNA levels of three endogenous genes (CyCA2, eIF4E,
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Fig. 1 Resource sharing and the origin of gene expression burden. a Characterization of gene expression burden. Expression of independent exogenous
genes impacts on host cellular resources. Thus, perturbations in one gene’s expression (hereby named X-tra) affect the expression of a second gene
(hereby named capacity monitor). b Modeling of gene expression in a resource-limited environment. Modeling of gene expression is generally performed
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Supplementary Fig. 19, the absolute expression of X-tra is higher with mitigation.
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GAPDH, Fig. 2d, Supplementary Fig. 28). Notably, in transfected
cells that express high and intermediate levels of EGFP and
mKate, the expression of CyCA2, eIF4E, and GAPDH decreases
when compared to the non-transfected population. We also
measured the mRNA levels of CyCA2, eIF4E, and GAPDH in
cells transfected with X-tra/capacity monitor molar ratios from

1:1 to 2:1 and observed a progressive, albeit not dramatic decrease
with higher amounts of X-tra when compared to the 1:1 ratio
(Supplementary Fig. 6). Of note, in the latter experiment cells
were not sorted before mRNA extraction.

To provide further support to the observations on transcrip-
tional burden on exogenous genes (Fig. 2c), we implemented a
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genetic circuit that can selectively overload the transcriptional
resource pool without sequestering translational resources. The
system is based on the self-cleaving hepatitis delta virus (HDV)
ribozyme, which ensures that most of the transcribed mRNA is
cleaved and thus destabilized (Fig. 2e, left). The circuit is
composed of a single plasmid with two transcriptional units
(TUs). One TU contains a tTA transcription factor co-expressed
with the mRuby3 (capacity monitor) via the P2A peptide, driven
by a constitutive promoter. The second TU includes the HDV-X-
tra expression regulated by the TRE promoter. In this setup, Dox
can be used to modulate the amount of burden imposed, similar
to what was already shown in Fig. 2b.

We compared this circuit to a catalytically inactive mutant of the
HDV ribozyme in HEK293T cells. As expected, we observed that
when the HDV ribozyme is inactive, X-tra protein levels increase
with decreasing amounts of Dox (Supplementary Fig. 7, top pale
pink bar), whereas those of the capacity monitor decrease (Fig. 2e,
bottom pale blue bar). In contrast, when the HDV ribozyme is
active, X-tra expression is strongly reduced and only minorly
increasing with lower Dox concentrations (Supplementary Fig. 7,
top dark purple bar). Here, the capacity monitor levels decrease to a
smaller extent than in the previous condition, supporting the
observations in Fig. 2c that transcriptional resources are limited to a
certain extent (Fig. 2e, dark blue bar). Interestingly, the expression
levels of the capacity monitor with active HDV ribozyme are higher
compared to the inactive mutant (Supplementary Fig. 7, bottom
dark blue bar). We suggest that, assuming that the X-tra mRNA
with an active HDV ribozyme is decapped and rapidly degraded, it
is likely to sequester fewer translational resources, which should
result in higher expression of the capacity monitor.

Transcriptional resource pool sharing is therefore at least
partially responsible for the described gene expression trade-offs,
and translational resources may represent an additional bottle-
neck to the overall expression of synthetic genes. We confirmed
this hypothesis by adding a synthetic intron31 in the 5′
untranslated region (UTR) of the X-tra fluorescent protein
(Fig. 2f, top). The synthetic intron enhances translation by
augmenting mRNA export from the nucleus to the cytoplasm31

and therefore imposes specific translational load. Indeed, we
observed higher expression of X-tra in HEK293T (Fig. 2f) and
H1299 (Supplementary Fig. 8b) cell lines in the presence of a
synthetic intron, accompanied by lower capacity monitor levels,
confirming that resources employed for translational regulation
are also limiting. Thus our data collectively indicate that
exogenous genes compete for resources both at the transcriptional

and translational levels, overall imposing a gene expression
burden on mammalian cells.

Since one of the goals in synthetic biology is output
predictability, reproducibility, and robustness, gene expression
burden is a key issue to address. We reasoned that post-
transcriptional and translational regulators, such as RBPs and
miRNAs, may free up cellular resources32 by repressing target
mRNA translation or inducing its degradation. If true, they could
be exploited in more robust circuit topologies to reduce gene
expression load, resulting in improved performance and predict-
ability of engineered circuits. Therefore, we tested two RBPs,
L7Ae and Ms2-cNOT7 (refs. 33,34), as well as endogenous
miRNAs, miR-221 and miR-31, in HEK293T (Fig. 2g, h) and
H1299 (Supplementary Fig. 8c, d) respectively. For each system, a
fluorescent protein encoding mRNA targeted by either RBPs or
miRNAs (X-tra) was co-expressed with a second, constitutively
expressed fluorescent readout (capacity monitor). L7Ae binds the
5′UTR of the X-tra mRNA inhibiting its translation, whereas Ms2
binds target sites (TS) in the 3′UTR of the X-tra transcript,
allowing cNOT7 to cut the polyA tail to destabilize the target
mRNA33. We consistently observed in both cell lines that X-tra
downregulation by RBPs results in increased levels of the capacity
monitor (Fig. 2g, Supplementary Fig. 8c).

miRNAs operate by either translation inhibition or mRNA
degradation, according to complete35 or partial36 complementar-
ity to the mRNA target. To evaluate the effect of miRNA
regulation on cellular resource reallocation, we placed three
perfect complementary TS in the 3′UTR of X-tra, which respond
to the endogenous miR-221 and miR-31 highly expressed in
HEK293T and H1299 cells. The capacity monitor expression
levels increased when the X-tra mRNA was downregulated by
miRNAs, as compared to controls lacking miRNA TS (Fig. 2h,
Supplementary Fig. 8d).

To further demonstrate that the burden imposed by synthetic
circuits is cell-type independent, we performed the same set of
experiments of Supplementary Fig. 1d and Fig. 2f–h in U2OS,
HeLa, and CHO-K1 cells, obtaining similar results (Supplemen-
tary Figs. 9–11). Interestingly, even CHO-K1 cells, which are the
workhorses of the biopharmaceutical industry due to their high
productive capability37 show cellular burden. Redistribution of
resources was also observed by the RBPs L7Ae and MS2-cNot7
and the highly expressed endogenous miR-221 and miR-21 in
U2OS and HeLa/CHO-K1 cells, respectively.

These results confirm that post-transcriptional regulators can
redistribute intracellular resources and, importantly, that this

Fig. 2 Burden imposed by genetic circuits in mammalian cells. a Left: As the total plasmid amount increases, the total expression plateaus. Right: Titration
of two plasmids expressing the fluorescent proteins mCitrine and mRuby3 from EF1α promoters in ratios from 1:4 to 4:1 (total of 50 ng, top right; or 500 ng
of DNA, bottom right). N= 3 biological replicates. Source data are provided as a Source Data file. b Two plasmids were co-transfected, one constitutively
expressing capacity monitor and tTA from a strong constitutive promoter and the other expressing X-tra from a tTA responsive promoter. Capacity
monitor levels counterbalance the increase in X-tra expression. Flow cytometry data are normalized to the expression at maximal Dox. N= 3 biological
replicates. Source data are provided as a Source Data file. cmRNA quantification of X-tra and a capacity monitor expressed at different molar ratios. As the
X-tra increases, the mRNA levels of the capacity monitor decreases. N= 4 biological replicates. qPCR analysis was performed 48 h post-transfection and
data show fold change ± SE. Source data are provided as a Source Data file. d Cells transfected with a plasmid expressing two fluorescent proteins from a
bidirectional promoter were sorted according to high, intermediate, or no fluorescence (Supplementary Fig. 4) for mRNA extraction. mRNA levels
expressed from endogenous genes decrease in cells with intermediate and high fluorescence. N= 3 biological replicates. Data show fold change ± SE.
Individual values are plotted in Supplementary Fig. 28. Source data are provided as a Source Data file. e Capacity monitor levels are higher with an HDV
ribozyme rapidly degrading the capacity monitor mRNA than with an inactive mutant, suggesting a sequestration of transcriptional resources. N= 3
biological replicates (N= 2 for HDV−, 1.6 ng/μL DOX). Source data are provided as a Source Data file. f The synthetic intron shows higher X-tra levels
compared to a control and leads to reduced capacity monitor levels. N= 4 biological replicates. Source data are provided as a Source Data file. g Repressed
X-tra expression leads to increased capacity monitor levels. N= 2 biological replicates for L7Ae and N= 4 for Ms2-cNOT7. Source data are provided as a
Source Data file. h When X-tra is downregulated by miR-221 endogenously expressed in HEK293T cells, the capacity monitor levels increase. All flow
cytometry data were acquired 48 h post-transfection and are plotted as mean ± SE. SE standard error, r.u. relative units. N= 2 biological replicates. Source
data are provided as a Source Data file. Unpaired two-sided T-test. P value: ****<0.0001, ***<0.0005, **<0.005, *<0.05.
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phenomenon is cell-context independent. The extent of negative
correlation between X-tra and capacity monitor expression, as
well as the amount of repression by post-transcriptional
regulators, differs across cell lines; this could be the consequence
of several factors, such as the relative abundance of transcrip-
tional, post-transcriptional, and translational resources.

A major advantage of miRNAs over RBPs is that they are
endogenously expressed and cell line specific. Thus, their
expression does not impose an additional burden, and since
several thousand endogenous miRNAs with different TS are
naturally present in mammalian cells38, the design space is rather
large, giving rise to a tremendous number of circuits that can be
easily tailored to the cell/tissue of interest. Based on the results
presented here, we envision that genetic circuits that mitigate
resource competition via miRNAs may be designed for any
mammalian cell line with a very broad set of potential
applications.

Characterizing the effect of miRNAs on resource distribution.
We sought to characterize the correlation between miRNA-
mediated downregulation and resource redistribution by building
a library of miRNA sensors for miR-31, which is endogenously
expressed in H1299 lung cancer cells39. The miRNA sensor is
composed of the fluorescent reporter mKate with or without
miR-31 TS, encoded along with the capacity monitor (EGFP) on
a single plasmid with a bidirectional promoter (Fig. 3a). The
library includes 0, 1, or 3 fully complementary miR-TS in the 3′
or 5′UTR of mKate.

Similar to what was previously observed (Supplementary
Fig. 8d), when the miRNA sensor’s levels decrease as a
consequence of miR-31 regulation, the expression of the capacity
monitor increases. The strongest repression was achieved with 3
TS in the 5′UTR and was accompanied by corresponding higher
capacity monitor levels (Fig. 3b). Conversely, when we rescued
mKate expression by a miR-31 inhibitor (Fig. 3c, left and
Supplementary Fig. 12, red bars), the capacity monitor levels
decreased (Fig. 3c, right and Supplementary Fig. 12, dark blue
bars) demonstrating that miRNA sensor and capacity monitor
levels are linked. Interestingly, the effect of the miRNA inhibitor
was more pronounced with TS placed in the 3′UTR. Synthetic
miRNA inhibitors bind to endogenous miRNAs in an irreversible
manner40, but differences in their action (e.g. when TS are placed
in the 3′ versus 5′UTR), as well as mechanistic insights into these
differences, are still missing.

To confirm that miRNA-mediated resource redistribution is
independent of experimental setting and plasmid design, we
encoded the miRNA sensor and capacity monitor on two separate
plasmids. Similar to previous results, miRNA sensor and capacity
monitor were negatively correlated (Supplementary Fig. 13a),
suggesting that cellular burden and miRNA-dependent resource
reallocation are a common challenge and solution respectively.
Downregulation of the miRNA sensor was also confirmed by
qPCR (Supplementary Fig. 13b). Finally, when the miR-31 sensor
was transfected in low miR-31 cell lines such as U2OS and
HEK293T, neither the miRNA sensor nor the capacity monitor
levels varied (Supplementary Fig. 14), further confirming the
miRNA-dependent resource reallocation.

We showed in Fig. 2h and Supplementary Figs. 8d, 9d, 10d and
11d that miRNA-dependent resource reallocation is observed
across different cell lines, by expressing cell-specific miRNA
sensors which include 3 TS in the 3′UTR. We then built a library
of sensors with different numbers and locations of TS for
miRNA-221 and -21 which are highly expressed in U2OS and
HeLa cells, respectively. We also confirmed here that miRNA
sensor and capacity monitor are inversely correlated, consistent

with our observations in H1299 cells (Supplementary Figs. 15
and 16).

Overall these data show that miRNAs can be used to develop
resource-aware plasmid-designs harboring burden-mitigating
circuit topologies, and that the number and location of TS can
be tuned to achieve desired protein expression levels.

A resource-aware model framework. In order to provide a better
understanding of our results, we developed a general resource-
aware model, which offers a simple and convenient framework
for extending existing models of biochemical reactions allowing
them to incorporate the effects of shared limited resources.

Figure 4a illustrates an overview of the framework. The main
idea is to replace the rates of reactions that involve a shared
resource with an effective reaction rate that captures the reduced
availability of that resource due to the presence of competing
genes. To create a distinction between regular reactions and
resource-limited ones, we use double-headed reaction arrows to
denote resource-limited reactions as illustrated at the bottom
of Fig. 4a. This double-headed arrow summarizes the set of
intermediate interactions shown in more detail at the top left
of Fig. 4a. Here, the substrate Ai binds resource R with rate k+i to
form the complex Ci. This reaction is also assumed to be
reversible with rate k−i. With a rate kcati the complex gives rise to
the product Bi, while also freeing up both the substrate Ai and the
resource R. We assume that the total amount of resource, Rtotal, is
conserved and remains constant at the time scale of the
considered reactions. Considering all possible substrates that
require resource R and assuming that Ci is in quasi-steady state,
the rate for resource-limited production can be expressed as keffi,
shown in the top right corner of Fig. 4a. A more detailed
derivation can be found in Supplementary Note 1. keffi is a
function of the total amount of resources and the current
concentration of all substrates competing for this resource. This
expression can be readily used to substitute all reaction rates that
involve shared and limited resources.

To demonstrate the effectiveness of our modeling framework,
we extend the models of different circuit topologies introduced in
Lillacci et al.24 to include limited resources and show that the
resulting extended models recapitulate the previously unex-
plained non-intuitive experimental observations.

The four topologies considered in Lillacci et al.24 were split into
two groups based on the presence of negative feedback from the
fluorescent protein DsRed to the transcriptional activator (tTA).
The first group consisted of the open-loop (OLP) and incoherent
feedforward (IFF) topologies. In both these circuits, the
constitutively expressed transcriptional transactivator, fused to
the fluorescent protein Cerulean (tTA-Cer), activates the expres-
sion of the fluorescent protein DsRed. Furthermore, the gene of
DsRed intronically encodes the synthetic miRNA FF4 (miR-FF4).
In the IFF topology, the matched target of this miRNA is present
in the 3′UTR of the DsRed gene. This target is replaced by a
mismatched target for the miRNA FF5 in the OLP. These detailed
interactions are depicted here in Fig. 4b, left side. To observe
potential shifts in the allocation of resources, we generated
dose–response curves by increasing the amount of transfected
tTA-Cer plasmid, while the other two plasmids, containing
DsRed and the constitutively expressed fluorescent transfection
reporter mCitrine, were held constant. As can be seen from the
model fit, plotted as a solid line in the data graph, the extended
model reproduces the non-monotonic behavior of the dose
responses (Fig. 4b, right).

The second group of topologies considered by Lillacci et al.24

consisted of the feedback (FBK) and the FBK+ IFF hybrid (HYB)
topologies. In addition to all the interactions described for the
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OLP and IFF circuits, the FBK and the HYB circuits possess miR-
FF4 targets in the 3′UTR of the tTA-Cer gene, which introduces
negative feedback. Furthermore, the FBK and HYB differ from
each other by the presence of a matched target for miR-FF4 in the
HYB topology, which introduces incoherent feedforward and is
replaced by a mismatched FF5 target in the FBK circuit. All the
interactions are illustrated in detail in Fig. 4c, left. The
dose–response curves for the two circuits were obtained as
described above. Again, the fit of the extended model to the data
captures its rather unexpected behavior (Fig. 4c, right).

Lastly, we also apply our framework to model the gene
expression systems presented in Figs. 2b, e, g and 3b. The resulting
model fits are shown in Supplementary Fig. 17. The models are
described in Supplementary Note 6 and the parameter values
obtained by fitting are summarized in Supplementary Tables 13–16.

Our simple framework adapts existing models of gene
expression to include pools of shared and limited resources. We
show that it can be used to provide an explanation for unintuitive
dose responses in tTA-based circuits. With this framework as a

tool, we believe that performance issues attributed to gene
expression burden can be addressed head-on in the design phase
of circuit-building, thereby reducing the need for costly
subsequent build-test-learn iterations.

Mitigating burden with iFFL circuits. We implemented a
strategy that exploits miRNA to reduce the indirect coupling
between co-expressed genes. In particular, we took advantage of
the fact that miRNA production also requires (pre-translational)
cellular resources, therefore acting as a sensor for resource
availability. Because of this, it is possible to reduce the coupling
between genes co-expressed via a common resource pool by
introducing miRNA-mediated repression of those genes (as long
as the miRNA itself is also affected by the same resource pool).
Since both the miRNA and the miRNA-repressed gene are
affected by the availability of resources, miRNA-mediated
repression implements an iFFL similar to previously published
circuits24,29,41 (Fig. 5a). Interestingly, this iFFL-based circuit
constitutes a biological implementation of the miRNA circuit
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proposed by Zechner et al.42. In this setting, the miRNA can be
interpreted as an estimator of its cellular context (e.g. amount of
free resources) and acts to filter out this context, thereby mini-
mizing its impact on the output of interest.

We explored this strategy for an endogenously expressed
miRNA (Fig. 5b, c) and a synthetic miRNA encoded on a plasmid

(Fig. 5d, e). More specifically, Fig. 5b describes a strategy that
exploits endogenous miRNAs to reduce the coupling of a gene of
interest (GOI) to the expression level of other genes, introduced
by the limitation in resources. Implementation of this strategy
only requires adding the TS of an endogenous miRNA to the 5′
UTR of the gene of interest (mKate). In our experimental setup,

b

0

30

60

90

0

1000

2000

3000

4000

0

1000

2000

tTA-Cerulean plasmid (ng)

C
er

u
le

an
 (

a.
u

.)
D

sR
ed

 (
a.

u
.)

m
C

it
ri

n
e 

(a
.u

.)

D
ata

F
B

K
H

Y
B

M
odel fit

F
B

K
H

Y
B

0

500

1000

1500

0

1000

2000

3000

0
500

1000
1500
2000
2500

0 100

tTA-Cerulean plasmid (ng)

C
er

u
le

an
 (

a.
u

.)
D

sR
ed

 (
a.

u
.)

m
C

it
ri

n
e 

(a
.u

.)

D
ata

O
LP

IF
F

M
odel fit

O
LP

IF
F

General modeling framework

W
it

h
o

u
t 

fe
ed

b
ac

k
W

it
h

 f
ee

d
b

ac
k

c

Bi

R

CiA i
k +

i

k –
i

k cat
i

k eff
i

A i Bi

Resource limited production

Molecular interaction network

Substrate
(e.g. mRNA)

Product
(e.g. Protein)

Complex

Shared resource
(e.g. Ribosomes)

- A1,...,A n are concentrations of substrates of R

- R total is the concentration of free and bound R

DsRed

f(x)

tTA-Cer.
tTA-Cer.
mRNA

tTA-Cer.
Plasmid

DsRed
Plasmid

DsRed
mRNA

miR-FF4 H
Y

B

mCitr.
plasmid

mCitr.mCitr.
mRNA

: transcriptionally limited production

: translationally limited production

: mass action kinetics

DsRed

f(x)

tTA-Cer.tTA-Cer.
mRNA

tTA-Cer.
Plasmid

DsRed
Plasmid

DsRed
mRNA

miR-FF4 IF
F

mCitr.
plasmid mCitr.mCitr.

mRNA

: transcriptionally limited production

: translationally limited production

: mass action kinetics

a

1801406020

0 100 1801406020

0 100 1801406020

0 100 1801406020

0 100 1801406020

0 100 1801406020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18392-x

8 NATURE COMMUNICATIONS |         (2020) 11:4641 | https://doi.org/10.1038/s41467-020-18392-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


when the copy number of a second gene (X-tra) is increased,
resources are drawn away from the expression of mKate and
allocated to the expression of X-tra. The shift in resource
allocation is expected to also affect miR-31, which acts as a
capacity monitor. This leads to a reduction in the repression of
mKate, effectively compensating for the burden imposed by the
co-expression of the X-tra gene.

To demonstrate this mitigation approach experimentally, we
co-transfected H1299 cells with increasing amounts of EGFP
(X-tra), along with a constant amount of mKate (GOI) that either
includes (for mitigation) or omits (no mitigation) three miR-31-
TS in the 5′UTR. As expected, the expression level of X-tra
approached saturation as the plasmid copy number increased,
both for the targeted and non-targeted GOI variants (Fig. 5c). In
agreement with previous results, the expression of the non-
targeted GOI strongly decreased with increased expression of
X-tra. Conversely, the decrease in expression of the targeted GOI
was only about a third of that of the non-targeted variant,
indicating improved adaptation to changes in resource availability
(Fig. 5c and Supplementary Fig. 18). This observation was also
captured well by a model of the system that explicitly considered
resources, as described in the previous section. It should be
noted that while the relative dynamic output range of X-tra is
slightly reduced (fold change of 1.94× with mitigation versus
2.18× without mitigation (Fig. 5c), our data show that the
absolute levels of X-tra increases about 2× in the presence of miR-
31-based iFFL, de facto benefiting from this network topology
(Supplementary Fig. 19). Analogously, miR-221-iFFL circuits
specific for U2OS and HEK293T cells43 (Supplementary Fig. 21)
show improved robustness to burden imposed by increasing
exogenous gene load (Supplementary Figs. 20 and 22). Models
used for fitting and the resulting parameter values are
summarized in Supplementary Note 5 and Supplementary
Tables 10 and 11.

Importantly, the delivery of genetic payloads also affects the
expression of endogenous genes (CyCA2, elF4E, and GAPDH), as
shown in Fig. 2d. We then sought to compare the expression of
the same endogenous genes in the presence or absence of miR-31
sensor in H1299 cells. After 48 h from transfection of EGFP and
mKate on a bidirectional plasmid, with mKate either including
(miRNA sensor) or not (noTS) TS for miR-31, we sorted cells
according to high, intermediate, or absence of fluorescence
expression (Supplementary Fig. 23a) and performed qPCR.
Curiously, we observed that in cells transfected with miR-31
sensor, the decrease in the expression of the endogenous genes
was much lower than in its absence (Supplementary Fig. 23c).
Furthermore, the expression of endogenous genes was inversely
proportional to the levels of fluorescent proteins (Supplementary

Fig. 22b). Thus, the lower expression of endogenous genes due to
the burden imposed by exogenous payloads is counteracted by
the miR-31-sensor. To investigate whether the use of endogenous
miRNAs may impair the regulation of native targets, we
measured the expression of SATB2 mRNA, a natural target of
miR-31 (ref. 44) in cells transfected with miR-31-sensor versus the
noTS control, and observed no difference between the two
conditions (Supplementary Fig. 24).

Motivated by our desire to achieve portability across cell lines
and multiple-output regulation, we implemented and tested a
synthetic miRNA-iFFL circuit that tunes two GOIs (Fig. 5d).
Similar to the endogenous case, the genes of interest, mCitrine
(GOI1) and mRuby3 (GOI2), encode TS for the miRNA-FF4 in
their 3′UTRs. In contrast to endogenous miRNA expression,
however, here the miRNA is expressed intronically from GOI2. In
this way, the circuit forms a self-contained unit that can be easily
transferred between cell types.

We co-transfected HEK293T cells with a plasmid encoding
constitutively expressed miRFP670 (X-tra) and a plasmid
composed of two TUs, each expressed under the constitutive
promoter EF1α (Fig. 5d). The first TU encodes mCitrine, whereas
the second drives mRuby3. Furthermore, the 3′UTR of mCitrine
and mRuby3 contained either three TS for the synthetic miRNA-
FF4 or three mismatched miR-FF5 TS (negative control). The
miRNA-FF4 was intronically encoded in the mRuby3 gene.
Identically to the endogenous case, the amount of X-tra plasmid
was increased while keeping the GOIs plasmid constant. Again,
expression of X-tra increased and approached saturation with
increasing molar amounts and consequently, the non-targeted
variants of the GOIs decreased (TFF5 in Fig. 5e). Conversely, the
expression of the targeted variants (TFF4 in Fig. 5e) decreased to
a lesser extent than the non-targeted ones, analogously to what
was observed for endogenous miRNAs, albeit with lower
efficiency. Finally, to demonstrate the portability of the device
we tested the approach in mouse embryonic stem cells
(Supplementary Fig. 25). Here, adaptation to shifts in resource
availability was similar to the endogenous miRNA-based regula-
tion (Fig. 5c). The model used for fitting and the resulting
parameter values are summarized in Supplementary Note 5 and
Supplementary Table 12. Thus, we showed that also in entirely
synthetic systems, adaptation to shifts in resource availability was
achieved. To ensure that the observed mitigation was not caused
by a higher tolerance to changes in availability at lower expression
levels, we showed analytically using the described modeling
framework that the normalized expression at lower levels was
more sensitive to burden (Supplementary Note 3).

Indeed, mitigation comes at the cost of the maximal achievable
expression levels for the capacity monitor. Moreover, tuning the

Fig. 4 A resource-aware mathematical modeling framework. a General framework for transforming molecular interaction network models. Existing
models of molecular interaction networks can be transformed to include shared limiting resources by substituting ki, the reaction rate of a resource-limited
production, with keffi. Shown above an exemplary resource-limited production are the detailed interactions between the substrate and the shared resource.
b Limited shared resources reproduce non-monotonous dose response in open-loop and incoherent feedforward circuit topologies. On the left, a graphical
representation of a model for both the open-loop (OLP) and incoherent feedforward (IFF) topologies from Lillacci et al.24. Transcriptional activation is
modeled by a Hill-type function. The solid arrows denote reactions assumed to follow the law of mass action. The model incorporates resources as
introduced in panel a. These reactions are depicted as double-headed arrows. The model was fit to data obtained by transiently transfecting HEK293T cells
with increasing amounts of plasmid encoding tTA-Cerulean. The data and the fit are shown on the right. c Limited shared resources reproduce non-
monotonous dose-response in feedback and hybrid circuit topologies. The model shown on the left is the same as in panel b with an additional negative
feedback from miR-FF4 to tTA-mRNA. These topologies correspond to the feedback (FBK) and hybrid (HYB) topologies from Lillacci et al.24 The activation
of gene expression by tTA-Cerulean is modeled by a Hill-type function as shown in the center. Reactions with double-headed arrows denote resource-
limited production reactions as introduced in panel a. Solid arrows are assumed to follow the law of mass action. The model was fit to experimental data
obtained from transient transfections with increasing amounts of plasmid encoding tTA-Cerulean. A description of the models can be found in
Supplementary Note 4 and the parameter values obtained by fitting are summarized in Supplementary Table 7. Data were obtained 48 h after transfection
and are plotted as mean ± SE. SE standard error. N= 3 biological replicates. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18392-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4641 | https://doi.org/10.1038/s41467-020-18392-x | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


iFFL circuit to become even less sensitive to changes in available
resources will necessarily further limit the maximal expression.
This trade-off is intrinsic to the iFFL mitigation strategy.
Nevertheless, these results suggest that our approach can be used
to mitigate resource-mediated coupling of gene expression despite
cell-to-cell variability, demonstrating the portability and broad

applicability of our findings. Our results demonstrate that iFFL
circuits can mitigate burden from transgene expression in
mammalian cells. Importantly, by using miRNAs one can either
opt for endogenous miRNAs to specifically tailor a circuit to a
desired cell line or create a portable circuit by using a synthetic
miRNA such as miR-FF4.
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Discussion
Our study demonstrated that the sharing of limited cellular
resources represents a general bottleneck for the predictability
and performance of transiently transfected synthetic circuits in
mammalian cells, with important consequences for mammalian
synthetic biology and biotechnology applications. Due to resource
limitations, transient heterologous gene expression results in the
coupling of independent exogenous genes and affects the
expression of endogenous ones. We presented a detailed char-
acterization of the distinct contributions of transcriptional and
translational processes to resource competition and showed that
RBPs and miRNAs can redistribute cellular resources thereby
alleviating burden. To get a deeper understanding of the
mechanisms behind gene expression coupling, we described a
modeling framework that captures the indirect interdependence
of gene expression in a resource-limited context. Our resource-
aware model successfully recapitulated the non-intuitive behavior
of the dose responses for the family of controllers described in
Fig. 4, demonstrating its potential to aid the design of circuits that
are less prone to burden effects.

The modeling framework also suggested that an iFFL is a
particularly well-suited circuit motif for mitigating burden effects.
The iFFL itself is one of the core gene regulatory motifs in biol-
ogy, and unsurprisingly it has served as inspiration for many
synthetic genetic circuits that exploit its adaptation
properties24,29,41,45. In this study we adopt a miRNA imple-
mentation of iFFL circuits for the purpose of burden mitigation.
Previously, synthetic miRNA-based iFFLs have been demon-
strated to increase robustness to gene dosage variability24,41 and
external perturbations29. In contrast to synthetic miRNAs,
endogenous miRNAs have seen far more limited use in synthetic
circuits (e.g. as inputs to synthetic cell-type classifiers46,47).
Regardless of their origin, miRNA-based iFFL circuits were
shown here to decouple the expression of both exogenous and
endogenous genes. We speculate that this positive effect is
attributed to the freeing up of translational resources, leading to
an increase in the expression of proteins involved in the tran-
scription of endogenous genes. At the same time, as already
proposed in Gambardella et al.48, the downregulation of mKate
by miRNAs may lead to a “queueing effect” for the degradation of
the other mRNAs, similar to what was shown with two inde-
pendent proteins tagged for degradation by the proteasome49.

An implementation of iFFL could alternatively be achieved
using RBPs (e.g. L7Ae and Ms2-cNOT7), or using endor-
ibonucleases as is done in a concurrent study by Jones et al.50.
Here, we opted for a miRNA-based approach (both endogenous
and synthetic) due to several considerations. RBPs impose addi-
tional burden, limiting their suitability to mitigate burden itself,
while miRNAs are endogenously or intronically expressed with

the GOI, thus channeling a negligible amount of resources. To
achieve minimal load as in our endogenous miRNA-based iFFL,
the RBP alone, or the iFFL should be integrated into the genome.
However, a single-copy integration may not guarantee burden
mitigation, whereas multiple copy integration may constitute
itself a new source of burden. Such systems would need to be
tested to assess their usefulness for burden mitigation. Moreover,
RBPs rely on specific binding sites that are not as easy to tune as
miRNA TS. Lastly, miRNA circuits do not use genetic compo-
nents that derive from different organisms, circumventing
potential toxicity and immunogenicity concerns that could limit
their application in medical therapy51,52.

At the same time, miRNAs offer several inherent benefits.
Specifically, iFFL circuits that exploit endogenous miRNAs enable
cell-type specificity46,53, whereas synthetic miRNAs enable port-
ability of circuits across different cell lines. Furthermore, flex-
ibility at the sequence level allows scaling up to many
orthogonally operating circuits. The specificity of a miRNA can
be easily engineered to target any synthetic or endogenous gene
without the need to engineer the target itself54–56 (program-
mability). Finally, tunability of repression strength can be easily
achieved both through the number and the placement of the
targets, and can be used to enhance adaptation to variations in
resource availability. It should be noted that stronger repression
will yield lower expression levels of the gene of interest (GOI,
Fig. 5c). This trade-off is unavoidable, and is an inherent lim-
itation to all implementations of iFFL-based burden-mitigation
circuits, including endoRNase implementations.

A potential limitation of miRNA-based iFFL circuits is the
diversion of endogenous miRNAs from native targets to synthetic
ones. Although this is not what we observe in our miR-31 iFFL
(Supplementary Fig. 24) this may however give rise to an inevi-
table trade-off similar to what has been observed for competing
endogenous RNA (ceRNA). ceRNAs are known to naturally
regulate other RNAs by competing for miRNA-binding. To
attempt to remedy this, one could use partially complementary
TS, which would decrease the affinity of the miRNA to the target
and diminish the competition. However this would make the
system less efficient and potentially decrease the mitigation effect.
Alternatively, the incorporation of multiple TS that respond to
different highly expressed miRNAs would distribute the compe-
tition between multiple miRNAs and reduce the detrimental
effects on their native targets.

Besides iFFLs, negative feedback motifs24,57–60 can also be used
to mitigate resource burden, as was shown in a series of studies in
Escherichia coli13,17,20,21,61. While negative feedback circuits
possess well-established robustness properties, iFFL circuits have
several advantages for burden mitigation. In particular, iFFL
circuits are considerably simpler to implement and easier to tune

Fig. 5 Mitigating the effects of resource limitation with microRNA-based iFFL. a The microRNA-based incoherent feedforward loop (iFFL) motif.
b Mitigation system based on endogenous microRNA. At high copy number of the X-tra, resources are drawn away from the production of the GOI and
miR-31. By sensing the resource availability and repressing the GOI less when there are fewer resources, the miRNA reduces the effect of limited resources.
c Two plasmids were co-transfected into H1299 cells which respectively express the X-tra and GOI genes (EGFP and mKate respectively (b)), and the
molar ratio of the X-tra:GOI plasmid was progressively increased. The presence of miR-31 TS in mKate 5′UTR mitigates effects due to resource sharing. The
parameter values obtained by fitting are summarized in Supplementary Table 8. N= 3 biological replicates. dMitigation system based on synthetic miRNA.
In the presence of many copies of the X-tra gene, resources are drawn away from the production of both the GOIs and the miR-FF4. Due to lower
production of miR-FF4 the GOIs are less repressed. This compensates for the reduced availability of resources. e A plasmid encoding both the fluorescent
protein mCitrine and an intronic microRNA expressed from the mRuby3 gene (GOI1, GOI2 and miR-FF4 (d)) was co-transfected into HEK293T cells with
increasing amounts of a plasmid expressing the X-tra gene (miRFP670 (d)). The impact of resource limitation on both GOIs was reduced when they
contained three miR-FF4 targets in their 3′UTRs compared to when they contained three mismatched miR-FF5 targets. The parameter values obtained by
fitting are summarized in Supplementary Table 9. N= 3 biological replicates. Source data are provided as a Source Data file. A description of the models
can be found in Supplementary Note 5. Flow cytometry data were acquired 48 h post-transfection and are plotted as mean ± SE. SE standard error, r.u.
relative units.
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than negative feedback circuits, which usually require more
components and can become dynamically unstable if not properly
designed and tuned. In terms of dynamic response, iFFL circuits
are also generally faster in rejecting disturbances like a sudden
change in resource availability. Indeed iFFL regulation responds
to the disturbance itself, while negative feedback begins to act
only after the impact of the disturbance on the regulated output
has been detected.

In this study we characterized the contribution of transcrip-
tional and translational processes to resource competition in
mammalian cells. In yeast, it was previously reported that
squelching, a shortage of general transcription factors, is
responsible for the evolutionary breakdown of synthetic gene
circuits following exogenous gene expression under a rtTA-
responsive promoter23. However, a deeper understanding of
similar effects in mammalian cells is currently lacking. For
example, the activation domain of tTA, VP16, interacts with
essential components of the transcription machinery such as
TFIIB, TFIID, TFIIH, and dTAFII40 (ref. 62), whose abundances
or sub-compositions are unknown and may vary widely across
cells63,64. Uncovering the key players responsible for gene cou-
pling and endogenous genes’ dysregulation will enable the
implementation of even more robust and resource-aware solu-
tions to mitigate gene expression burden.

Ultimately, the goal of gene circuit engineering is the creation
of cell lines that stably express circuits of interest. Although the
presented work focused on the effects of limited resources as
induced by transient transfection, it would be natural to investi-
gate if similar effects also occur in the context of genomic inte-
gration of highly expressed genes. Moreover, while using a
transiently transfected capacity monitor enables the quantifica-
tion of cellular expression capacity by providing a comparative
measure of the geometric mean of free resources in a burdened
population relative to a minimally burdened baseline population,
stable integration of the capacity monitor would permit a more
direct measure in terms of arithmetic mean of free cellular
resources (Supplementary Note 7).

Understanding the impact of resource availability during the
engineering of biological systems will have important con-
sequences for biological studies and for improved mammalian cell
engineering. For example, studies of biological functions that
employ perturbations by exogenous gene expression often lack
accuracy and exhibit highly variable results due to less-than-
optimal genetic circuit designs. Using burden-aware designs, cell
therapies that rely on finely tuned expression and secretion of
therapeutic molecules can now be engineered with resource-
aware circuits. Our findings suggest that, when choosing a host
cell line, one of the key factors to consider should be its tran-
scriptional and translational capacity22 not only in terms of
productivity but also in terms of the ability of the cells to
maintain their fitness while performing their engineered function.
Our study presents a portable design capable of enhancing the
insulation of transgene expression and will thus contribute to the
development of robust-by-design mammalian synthetic circuits,
with important implications for basic science and applications in
industrial biotechnology and medical therapy.

Methods
Cell culture. HEK293T, U2OS, and HeLa cells (all from the ATCC) used in this
study were maintained in Dulbecco’s modified Eagle medium (DMEM, Gibco);
H1299 (ATCC) were maintained in Roswell Park Memorial Institute medium
(RPMI, Gibco); CHO-K1 were maintained in minimum essential medium α (α-
MEM, Gibco). All media were supplemented with 10% FBS (Atlanta BIO), 1%
penicillin/streptomycin/L-glutamine (Sigma-Aldrich), and 1% non-essential amino
acids (HyClone). HEK239T cells (ATCC, strain number CRL-3216) used for part
of this study were maintained in DMEM (Sigma-Aldrich or Gibco) supplemented
with 10% FBS (Sigma-Aldrich), 1× GlutaMAX (Gibco) and 1 mM Sodium Pyruvate

(Gibco). E14 mouse embryonic stem (mES) (a kind gift from Dr. Maaike Welling)
cells were grown in DMEM (Gibco) supplemented with 15% FBS (PAN Biotech;
specifically for ES cell culture), 1% penicillin/streptomycin (Sigma-Aldrich), 1%
non-essential amino acids (Gibco), 2 mM L-glutamine (GlutaMAX; Gibco), 0.1 mM
beta-mercaptoethanol (Sigma-Aldrich), and 100 U/mL Leukemia inhibitory factor
(LIF; Preprotech). At every passage the media was additionally supplemented with
fresh CHIR99021 to 3 μM and PD0390125 to 1 μM to support naïve pluripotency
(2i conditions65). All labware used was coated with 0.1% gelatin (prepared our-
selves) prior to plating the ES cells. The cells were maintained at 37 °C and 5% CO2.

Transfection. Transfections were carried out in a 24-well plate for flow cytometry
analysis or in a 12-well plate format for flow cytometry and qPCR analysis run on
the same biological replicates (Supplementary Table 1). Transfections for Fig. 2d
and Supplementary Figs. 5 and 22 were carried out in 6 cm dishes. H1299, HeLa,
U2OS, HEK293T, and CHO-K1 cells were transfected with Lipofectamine® 3000
(ThermoFisher Scientific) according to the manufacturer’s instructions and 300 ng
total DNA (500 ng in Fig. 2c, d and Supplementary Figs. 1, 8a, 9a, 10a, and 11a) in
24-well plates. DNA and transfection reagents were scaled up according to the
Lipofectamine® 3000 manufacturer’s instructions. miR-31 inhibitor (Invitrogen™
mirVana™ miRNA Inhibitors) was co-transfected using the same method as for
DNA (Fig. 3c).

HEK293T cells used for experiments shown in Figs. 2a, b, e, 4 and 5e were
plated approximately 24 h before transfection at 62,500–75,000 cells per well in 24-
well plates. The transfection solution was prepared using polyethylenimine (PEI)
“MAX” (Mw 40,000, Polysciences, Inc.) in a 1:3 (μg DNA to μg PEI) ratio with a
total of 500 ng of plasmid DNA per well. Both DNA and PEI were diluted in Opti-
MEM I reduced serum media (Gibco) before being mixed and incubated for 25 min
prior to addition to the cells. E14 mouse embryonic stem cells were transfected
using Lipofectamine® 2000 (ThermoFisher Scientific) in a 1:3 (μg DNA to μg
Lipofectamine® 2000) with 300 ng of plasmid DNA per well. The transfection was
performed on cells in suspension immediately after plating at approximately 30,000
cells per well. All wells were coated with 0.1% gelatin before the addition of
the cells.

Flow cytometry and data analysis. H1299, HEK293T, U2OS, HeLa, and CHO-K1
cells were analyzed with a BD Facsaria™ cell analyzer (BD Biosciences) or BD
Celesta™ cell analyzer (BD Biosciences) using 488 and 561 lasers. For each sample
>20,000 singlet events were collected and fluorescence data were acquired with the
following cytometer settings: 488 nm laser and 530/30 nm bandpass filter for EGFP,
561 nm laser and 610/20 nm filter for mKate. Cells transfected in 12-well plates
were washed with DPBS, detached with 100 μL of Trypsin-EDTA (0.25%), and
resuspended in 600 μL of DPBS (Thermo Fisher). Two hundred microliters of cell
suspension were used for flow cytometry and 400 μL for RNA extraction.
HEK293T used for experiments shown in Figs. 2a, b, e, 4 and 5e cells were mea-
sured 48 h after transfection on a BD LSRFortessa™ Special Order and Research
Product (SORP) cell analyzer. mCitrine fluorescence was excited via a 488 nm laser
and was detected through a 530/11 nm bandpass filter. mRuby3 was excited via a
561 nm laser and measured through a 610/20 nm bandpass filter. miRFP670 was
excited at 640 nm and measured through a 670/14 nm bandpass filter. E14 mES
cells were measured 48 h after transfection on a Beckman Coulter CytoFLEX S flow
cytometer. mCitrine fluorescence was excited using a 488 nm laser and was
detected through a 525/40+OD1 bandpass filter. mRuby3 was excited with 561 nm
laser light and measured through a 610/20+OD1 bandpass filter. miRFP670 was
excited at 638 nm and measured through a 660/10 bandpass filter. The cells were
collected for measurement by washing with DBPS (Sigma-Aldrich or Gibco) and
detaching in 70–180 μL of Accutase solution (Sigma-Aldrich). For each sample
between 10,000 and 200,000 singlet events were collected. Fluorescence intensity in
arbitrary units (a.u.) was used as a measure of protein expression. For each
experiment a compensation matrix was created using unstained (wild type cells),
and single-color controls (mKate/mCherry only, EGFP only or mCitrine only,
mRuby3 only, miRFP670 only). Live cell population and single cells were selected
according to FCS/SSC parameters (Supplementary Figs. 26 and 27). Data analysis
was performed with Cytoflow or a custom R script. Data fitting was performed
using Mathematica’s NonlinearModelFit function and the InteriorPoint method.

Cell sorting. H1299 cells used for the experiment shown in Fig. 2d were trypsi-
nized from 6 cm dishes and counted. They were then centrifuged at 500g for 5 min
and resuspended at a concentration of 5 mln/mL in sorting buffer (PBS 1×+ 3 mM
EDTA+ 0.8% Trypsin+ 1% FBS). Cells were sorted with a BD FACSMelody™ cell
sorter according to their fluorescence levels (Supplementary Fig. 5). In total,
150,000 cells per gate were collected.

DNA cloning and plasmid construction. Plasmid vectors carrying gene cassettes
were created using In-Fusion HD cloning kit (Clonetch), Gibson Assembly, via
digestion and ligation or using the yeast toolkit (YTK)66 with custom parts for
mammalian cells. Gibson Assembly master mixes were created from Taq DNA
Ligase (NEB), Phusion High-Fidelity DNA Polymerase (NEB), and T5 Exonuclease
(Epicentre) in 5× isothermal buffer (Supplementary Table 6). Ligation reactions
were performed in 1:2–5 molar ratios of plasmid backbone:gene insert starting with
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50–100 ng of vector backbone digested with selected restriction enzymes. Assem-
blies using the YTK were performed according to the original publication66. Newly
created constructs were transformed into XL10-Gold or TOP10 E. coli strains.

For plasmids with miRNA TS, the target sequences were selected using miRBase
database (http://www.mirbase.org/) and are listed in Supplementary Table 4. List of
oligos used to clone endogenous miRNAs TS are listed in Supplementary Table 3.
All plasmids were confirmed by sequencing analysis and deposited to addgene.

To perform western blot analysis, an His-tag composed of six Histidine residues
was inserted after the start codon of mKate encoding plasmids.

mRNA extraction and reverse transcription. RNA extraction was performed
with E.Z.N.A.® Total RNA Kit I (Omega Bio-tek). The protocol was followed
according to manufacturer’s instructions and RNA was eluted in 30 L of RNAse
free water. RNA samples were conserved at −80 °C.

PrimeScript RT Reagent Kit with gDNA Eraser—Perfect Real Time (Takara)
was used according to the manufacturer’s instructions. The protocol was
performed on ice in a RNAse free environment to avoid RNA degradation. A
negative control without PrimeScript RT Enzyme Mix I was always prepared to
investigate genomic DNA contamination.

qPCR. Fast SYBR Green Master Mix (ThermoFisher Scientific) was used to per-
form qPCR of cDNAs obtained from 500 ng of RNA and diluted 1:5. Samples were
loaded in MicroAmp™ Fast Optical 96-Well Reaction Plate (0.1 mL) and the
experiment was carried out with a CFX96 Touch Real-Time PCR Detection System
(BioRad) machine. Each well contained 20 μL of final volume (7 μL SYBR Green
Master Mix, 10 μL ddHO, 1 μL of each primer, 1 μL of template). Also, a control
without template (blank) was set. Primers were designed to amplify a region of
60–200 bp (Supplementary Table 5) and with a temperature of annealing between
50 °C and 65 °C. Data were analyzed using the comparative Ct method according to
the Applied Biosystems Protocols.

Statistics and reproducibility. Each experiment was repeated independently at
least twice with similar results, with the exception of Supplementary Fig. 2 and
condition w/o Mitigation, 1.5 equimolar EGFP to mKate plasmid in Supplementary
Fig. 20. All models used for parameter fitting are contained in Supplementary
Note 4–6. The obtained parameter values are summarized in Supplementary
Tables 7–16.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data are included as Source Data and/or are available from the corresponding
author on reasonable request. Plasmid sequences are deposited on AddGene and
GenBank under the accession codes specified in Supplementary Table 2. Strains and
plasmids used in this study are available from the corresponding author on reasonable
request. The miRNA target sites were obtained from the miRBase database (http://www.
mirbase.org/) and are listed in Supplementary Table 4. Source data are provided with
this paper.

Code availability
The authors are confident that the conclusions do not strongly depend on the particular
choice of analysis software. Nevertheless, the code used for automated analysis and fitting
is available on reasonable requests from the corresponding authors.
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