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Abstract

We apply an information-theoretic measure to anatomical models of the Edinburgh Mouse Atlas Project. Our

goal is to quantify the anatomical complexity of the embryo and to understand how this quantity changes as

the organism develops through time. Our measure, Structural Entropy, takes into account the geometrical

character of the intermingling of tissue types in the embryo. It does this by a mathematical process that

effectively imagines a point-like explorer that starts at an arbitrary place in the 3D structure of the embryo and

takes a random path through the embryo, recording the sequence of tissues through which it passes.

Consideration of a large number of such paths yields a probability distribution of paths making connections

between specific tissue types, and Structural Entropy is calculated from this (mathematical details are given in

the main text). We find that Structural Entropy generally decreases (order increases) almost linearly throughout

developmental time (4–18 days). There is one ‘blip’ of increased Structural Entropy across days 7–8: this

corresponds to gastrulation. Our results highlight the potential for mathematical techniques to provide insight

into the development of anatomical structure, and also the need for further sources of accurate 3D anatomical

data to support analyses of this kind.
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Introduction

In his important text on developmental biology (Kauffman,

1993), Kauffman argues that order in living creatures arises

from a combination of evolution and self-organisation. A

remarkable fact about this beautiful text is that the mean-

ing of its title, ‘Origins of Order’ is left essentially implicit:

the meaning of the word ‘order’ is never defined. It is dis-

cussed extensively, contrasted with ‘chaos’, and asserted as

a property of various remarkable observations about fitness

landscapes, but we may continue to wonder what, pre-

cisely, is meant by ‘order’. It is not hard to account for this

ambiguity; exactly what should be meant by order, or

related words such as structure or complexity as they apply

to biological organisms, is not at all obvious. Indeed,

authors such as Grizzi & Chiriva-Internati (2005) consider

the meaning of anatomical structure in detail, making the

key point that ‘complexity can reside in the structure of the

system,’ and suggest the use of mathematics to quantify

this, without explaining precisely how.

In this paper, we offer a possibility for quantifying a par-

ticular kind of order: the physical structure that develops as

an organism grows. We call this measure Structural

Entropy.

Structural Entropy is a quantity calculated on an abstract

representation of the organism’s anatomy. To understand

how Structural Entropy works, it is helpful to consider the

general concept of entropy in Information Theory (Shan-

non, 2001). The quantity now known in that field as

entropy was originally called ‘uncertainty’ by Shannon.

Given a probability distribution over some set, if the set is

dominated by many equally likely elements (as in a normal

pack of cards), the outcome of choosing one at random is

very unpredictable, and hence the entropy will be large. If

some elements are much more likely to be chosen than

others (e.g. in a pack of cards containing 50 jokers and two

aces of spades), we can be a bit more certain about the out-

come and the entropy will be smaller. In this report, we use

this concept, as well as our previous work (Waites et al.,

2018) to construct such a probability distribution using the

topology of an anatomical model, augmented with geo-

metrical data. This distribution says how likely it is to find a
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notional particle, allowed to travel freely through the

embryo, in any given embryonic tissue.

There is, however, a major obstacle in applying this mea-

sure, especially in developmental anatomy: the lack of suffi-

cient good quality data to support applications of the type

we propose. What is required is a complete library of accu-

rate digital models (‘atlases’) of embryonic anatomy, from

closely spaced stages of development, each digitally anno-

tated so that each pixel (2D) or voxel (3D) is labelled with

the identity of the tissue in which it lies. We will refer to this

labelling process as ‘tagging’. The best current approxima-

tion of such a data library is the Edinburgh Mouse Atlas, or

eMouseAtlas (Davidson et al., 2001; Baldock et al., 2003;

Christiansen et al., 2006; Richardson et al., 2009, 2013;

Armit et al., 2012, 2015). The eMouseAtlas was constructed

by digitisation of serial sections of complete mouse embryos

at closely spaced stages of development. The different tis-

sues in each digital image were identified and delineated

by expert embryologists, who tagged the different regions

of the embryos with the tissue identity. These tagged

images were then assembled into 3D models of the corre-

sponding embryo, and the datasets are available online.

We use the eMouseAtlas to illustrate how Structural

Entropy can be calculated and show that it captures struc-

ture increasing with time. However, there are very few

datasets of this kind available.

The eMouseAtlas contains 3D tagged anatomical models

of house mouse (Mus musculus) embryos at a selection of

pre-natal stages of development. It is the best freely avail-

able dataset of its kind for demonstrating the kind of analy-

sis that we suggest. Nevertheless, it has some defects and

inconsistencies which we detail in the section ‘Mouse Atlas’.

More broadly, good quality 3D tagged anatomical models

for every developmental stage are simply not available for

any organism. The similarly named Worm Atlas (Altun

et al., 2002–2018), which uses the model organism

Caenorhabditis elegans, contains a wealth of resources: dia-

grams of adult organisms, cell lineages and gene expression

data, but only scattered anatomical models. There is a

wealth of magnetic resonance image data available for the

human brain (Van Essen et al., 2013), but this is intention-

ally distributed in a minimally processed way to encourage

development of techniques for identifying structures within

images and further processing. These data are therefore

not immediately amenable to the analysis that we advocate

here, though it is possible to imagine intermediate process-

ing of those images that could make it so.

Much previous work on the complexity of models of

anatomical features is from neuroscience. Several authors

characterise complexity as a dynamic quantity. Tononi et al.

(1994) introduced an information-theoretic measure called

Neural Complexity (NC). They measure the temporal pat-

terns of signals through neural networks and claim (also

Sporns et al., 2000) that these patterns must depend

strongly on the underlying anatomical structure. Later

authors such as Fan et al. (2017) consider information-theo-

retic measures on the neural connectome directly. Horn

et al. (2014) use a random-walk approach at a much finer

grain to find agreement between the structural and func-

tional connectivity for the brain’s default-mode network.

Chan et al. (2014) use this technique to measure desegrega-

tion of brain networks with age and long-term memory

function. For practical reasons, suitable data pertaining to

human developmental anatomy is difficult to obtain

(Huang et al., 2006; Mietchen & Gaser, 2009), particularly

for early developmental stages; therefore computational

morphometry is applied mainly to the study of diseases

related to ageing (Testa et al., 2004; Matsuda, 2013). We

believe that our Structural Entropy measure might also pro-

vide a useful diagnostic signal in the context of this kind of

ageing study and suggest this as an area of future research.

One of us (Davies, 2016) considered a similar question to

that which concerns us here, using a different subset of the

eMouseAtlas data. Davies considered the text annotations,

and the number of terms required to describe each devel-

opmental stage, arguing that the greater number of terms

needed, the greater the complexity. From these data,

Davies showed that the number of vocabulary terms

increases exponentially over time. We show here that what

Davies’ result provides is, in fact, a lower bound on order. In

this article we confine ourselves to developing Structural

Entropy in the context of the data from the eMouseAtlas

and show that it captures something of the intuitive idea of

increasing anatomical order as development progresses.

This line of reasoning relies on the assumption that the

anatomical analysis is a faithful representation of the

underlying structure in the organism. We show that Struc-

tural Entropy appears reasonably robust to inconsistencies

in manual analysis and tagging.

Methods

Because the detailed mathematical description of our methods

(section ‘Technical description’) may not be easily accessible to all

readers, we provide an additional illustrated description written in

non-technical English. This account (section ‘Informal description of

method’) captures the essence of how our analysis works but neces-

sarily involves informal and imprecise analogies; readers wishing to

criticise, replicate or build on our work are strongly advised to

engage directly with ‘Technical description’.

Informal description of method

As mentioned in the introduction, our concept of Structural Entropy

is related to Claude Shannon’s concept of ‘uncertainty’ (later called

‘entropy’) in the field of Information Theory. This is a measure of

disorder, or unpredictability, in a set of data. If the outcome of a

random dip into a bag of data elements is known with high proba-

bility (e.g. if 90% of the numbers in the dataset were ‘1’), then the

predictability would be high and the entropy low. If the outcome

of the random dip were only known with very low probability

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society
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(e.g. the numbers in the dataset were truly random), then the pre-

dictability would be low and the entropy high.

The structure of an embryo, or any other biological object, can be

modelled as a bag of data, each data element comprising 3D coordi-

nates (x, y, z) that specify its position and a tag that specifies the tis-

sue name at that point. A naive approach to measuring the degree

of order might therefore be to make many random dips into the

dataset for an embryo, and calculate the probability distribution of

finding a tag for different tissues (e.g. ‘ectoderm’, ‘mesoderm’, etc.

for a gastrulation-stage embryo), and use this to make a measure of

structure. This approach, however, has a serious problem: an embryo

that consisted of two tissues each of which occupied one half of the

embryo (Fig. 1A) would have the same probability distribution as

one that consisted of the same 50/50 mix of two tissues in a rich spa-

tial arrangement (Fig. 1B). Clearly, a measurement that would

ignore such rich anatomical organisation would not be useful.

To avoid this problem, we consider not simply random dips into

embryological data, but random paths taken through the embryo.

We begin at a random point and allow a particle to traverse a ran-

dom path (Fig. 1C). Then, after doing this for many starting points

and paths, we can calculate the probability distribution that a path

starting in tissue 1 (say, ectoderm) finishes in tissue 2 (say, endo-

derm) within a certain number of steps. It can be seen intuitively

that the probability distributions that would result from the anat-

omy in Fig. 1A, where most short paths would never leave their

starting tissue, would be very different from those resulting from

the anatomy in Fig. 1B. This way of proceeding does, therefore,

capture a measure of anatomical richness as well as simple propor-

tions of composition.

We use these path-based probability distributions to calculate

Structural Entropy, as defined in section on ‘Structural Entropy’

below. This involves one important adjustment. Clearly, the more

different tissues there are in an embryo, the more alternatives there

are for the tissue-type tag corresponding to a spatial position, and

the higher the maximum entropy. To avoid our measure being

dominated by this trivial effect, we calculate the maximum possible

entropy (highest possible disorder) of each embryonic stage by

imagining all its tissues being present in an arbitrarily fine, random

jumble. We then divide our measure of Structural Entropy from

that embryo by the maximum possible entropy, to provide a nor-

malised measure of Structural Entropy that can be compared, fairly,

between different embryonic stages that contain different numbers

of tissues.

Technical description of method

Path entropy

We previously defined Path Entropy as a measure of patterning on

tagged graphs (Waites et al., 2018) and we give a brief summary

here. See Glossary for the meaning of ‘graph’ and ‘tagged’ in this

context. In our original treatment (Waites et al., 2018) we used the

word ‘colour’ instead of tag, as is usual in computer science.

The intuition underlying Path Entropy is as follows. The standard

notion of entropy for 2D images is constructed from the probability

distribution of pixel colour values (Mangin, 2000; Gonzalez et al.,

2004; Tsai et al., 2008). The probability of a pixel being green, say,

is just the fraction of pixels that are green. To capture more struc-

ture, we generalised it in two ways. First, rather than a regular rect-

angular lattice as in a digital image, we allow an arbitrary graph,

with each vertex having a tag. Secondly, we consider not only the

probability of a vertex having a given tag, but the conditional prob-

ability distribution of its neighbours’ tags. This is then extended to

neighbours’ neighbours and so forth, for paths of a given length.

More formally, let G = (V, E, C, v) be a tagged graph, where V and

E are vertices and edges (see Glossary), C is a set of tags, and v is a

function that gives the tag corresponding to a vertex. In other

words if v is a vertex in this graph, then v(v) is its colour. This is

enough to re-create the standard image entropy mentioned above

by counting the number of vertices with tag a and dividing by the

total number of vertices,

pðaÞ ¼ jv 2 V ; vðvÞ ¼ aj
jV j ð1Þ

After all, a pixel grid can be thought of as a graph where each

pixel is a vertex and pixels are adjacent if they share an edge.

Instead of considering the vertices on their own, consider now

how they are connected together. A path in the graph is a

sequence of vertices connected by edges (loops are allowed). A

path of length n is a sequence of n + 1 vertices connected by n

edges in the graph. Define the function vn to be the analogue of v:

rather than giving the tag for a single vertex, vn(r) gives the

sequence of tags corresponding to a sequence of vertices r. If we

call Sn the set of all paths of length n in the graph, then we can find

the probability of a tag sequences s by analogously counting all of

the paths that have that sequence,

A Two tissues, each occupying
half of the embryo, in a simple
spatial arrangement.

B Two tissues, each occupying
half of the embryo, in a rich spa-
tial arrangement.

A

B

c A random path (B) from a ran-
dom starting point (A) through
and between the tissues.

Fig. 1 Tissues in simple and rich spatial arrangements and an example random path.

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society
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pnðsÞ ¼ jfr 2 Sn; vnðrÞ ¼ sgj
jSnj ð2Þ

The nth order Path Entropy is then defined simply as the entropy

of this distribution,

En ¼ �
X

s2Cnþ1

pnðsÞ log pnðsÞð Þ ð3Þ

Structural Entropy

A 3D anatomical model is not an abstract graph with edges and

indistinguishable vertices. It consists of regions in space that have

particular shapes, each region has a certain tag, and regions can be

adjacent to each other. To extend Path Entropy to a setting where

it can be applied to regions with spatial extent, accounting for their

geometrical structure, we reason as follows.

Begin with a space, X, with a Lebesque measure. In two or three

dimensions, this corresponds to normal Euclidean space, but for

generality we are not concerned so long as length, area, volume

and any higher-dimensional analogous concepts are well-defined

and can be summed or integrated over. Let this space be sub-di-

vided in to a set of regions, R ¼ Rif g, and ask what the probability

is, if a point is chosen uniformly at random, that it will be found in

a given region, Ri. This probability, is the fraction of the total vol-

ume occupied by that region,

pðRiÞ ¼
R
Ri
dxP

j

R
Rj
dx

ð4Þ

Analogously to the discrete case of image entropy, define the

function v to yield the tag for a given region. We can find the

probability of a certain tag, c, by adding up the probabilities of

choosing a point in a region with that tag,

pc ¼
X

Ri2R;vðRiÞ¼cf g
pðRiÞ ð5Þ

We would like to extend this in a way that accounts for the shape

of the regions and their adjacencies with each other. To provide

some intuition to guide us, we use the idea that structure is related

to communication. In a living organism, the shapes that different

anatomical systems have are strongly influenced by communication.

Nutrients and chemical signals travel along physical pathways and

diffuse across boundaries. The travel of these molecules from one

system to another (possibly undergoing transformation along the

way) is a kind of communication. Exchange of molecules between

systems is facilitated by relatively larger shared boundaries. This

constraint influences the shape of the system. Minimising boundary

size results in a spherical shape, so the degree to which diffusion

and hence communication is prioritised is the degree to which the

volume occupied by the system differs in shape from a sphere.

Proceeding on this basis, imagine that the randomly chosen point

somewhere, in some region, is a notional molecule or particle. This

particle is allowed to drift randomly in each region. When it comes

to the edge of a region adjacent to another it may diffuse across

this boundary. After some time, the particle will be found in some

region, possibly having traversed some others. If s1 represents the

path taken through the first region, s2 the path taken through the

second, and so forth, the sequence, s1, . . ., sn, represents the trajec-

tory of the particle. There is a tag that corresponds to each region,

so there is a tag sequence that corresponds to this trajectory. If we

can work out from the data all of the tag sequences that can be

produced by the notional wandering particle, then we can ask, as

we did before (Eq. 2) for a probability distribution of tag sequences.

We call the entropy of this distribution the Structural Entropy.

One way to work out the distribution of tag sequences is to con-

sider all the possible paths that this particle might take through the

various regions from each starting, to each ending point. This

approach affords a large degree of flexibility for modelling: each

region can contribute in different ways to the action, encoding

more information than is present in the spatial relations themselves.

However, the data necessary for such an ambitious approach are

not available and it is far from clear how to model appropriately

the contributions of different anatomical regions to the complexity

of the organisms as a whole.

We restrict the question to what can be answered with the avail-

able data. To this end, we ask instead, given that the particle

started in a region with the tag ci-, what is the chance that it even-

tually ends up in one with the tag cj? This question allows us to

quantify the notion of communication or interaction mediated by

this notional particle between regions of different type, over any

path. This answer to this question is the basis for our definition of

Structural Entropy.

To simplify matters, let us suppose that each Ri has a distinct tag.

This can be done without loss of generality because it is always pos-

sible to construct such a set. Let,

R0 ¼
[

Ri; vðRiÞ ¼ c; c 2 C
n o

ð6Þ

where ⋃ denotes spatial union. R0 is a set of distinctly tagged

regions.

We will model the trajectory of the particle as a Markov process.

A Markov process (in discrete time) is characterised by a stochastic

matrix, Q ¼ qij

� �
. Each element of this matrix, qij, represents the

probability that the notional particle, if it is in a region with the tag

ci, will cross into a region with the tag cj at the next time-step.

The starting position of the particle is given by Eq. 5. That is, we

assume that the particle has a chance to be starting in region Ri pro-

portionally to its share of the volume. We write this distribution of

starting positions as the column vector p ¼ pi½ �. After one time-step,

the probability distribution of where the particle will be found is

given by Qp. After n time-steps, the distribution is given by Qnp.

Using this, we can define the nth order Structural Entropy directly

analogously to the nth order Path Entropy by,

En ¼ Qnpð Þ � log Qnpð Þ ð7Þ

where the notation log xð Þ for some vector x ¼ xi½ � means

logðxiÞ½ �, and the product � is the standard vector dot- or inner-

product.

If the regions, Ri are connected, there is no partition in the graph

of their adjacencies, there are no islands, then the Markov process

described by Q is ergodic. A particle beginning in any region will

eventually visit every other, and there will be a solution to the

equation,

p ¼ Qp ð8Þ

giving the unique stationary distribution p that is independent

of the starting position (p; Pinsky & Karlin, 2010). We define the

entropy of this distribution, if it exists, to be the Stationary

Structural Entropy,

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society
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Ep ¼ p � log pð Þ ð9Þ

A method to calculate the Q remains to be determined. A princi-

pled way would be to say that a particle sufficiently close to a Ri’s

boundary has a chance of diffusing across the boundary into Rj pro-

portionally to the fraction of Ri’s total surface area that is adjacent to

Rj. Consider the figure on the right, showing the adjacency between

R1 and R2. The shaded liminal region d is taken to be the region

where diffusion can happen. The liminal region is a buffer around of

R1, extending outwards from the boundary, wherever there is an

adjacent region. We can nowwork out the transition probabilities,

q11 ¼
R
R1�d12

dxR
R1

dx
ð10Þ

q12 ¼
R
d12

dxR
R1

dx
ð11Þ

The chance to leave R1 for R2 is given by the fraction of R1’s vol-

ume that is near enough to R2 for the particle to diffuse across

the boundary. The chance to remain in R1 is the fraction of its

volume that is not sufficiently close to another region.

There are several reasonable ways to define the liminal region, d.

The most natural approach, suggested by the diagram, is for it to

be the region within some constant distance of the boundary. This

fails on practical grounds – namely, that determining the patch of

the surface of R1 that is adjacent to R2 relies on the underlying data

being sufficiently accurate and that there is a portion of their sur-

faces that are indeed spatially coincident. This is not actually the

case in practice with the available data.

We work around this limitation of the data in the following way.

We determine the portion of R1’s volume is near to R2 by dilating

the latter by a small amount, k, and take the intersection of R1 and

the dilated region, denoted by D(R2, k). We then calculate the tran-

sition probabilities by first calculating the relative volumes of a

region and its liminal volumes with adjacent neighbours,

vij ¼
R
Ri\DðRj ;kÞ dx i 6¼ jR
Ri
dx �P

i 6¼j vij otherwise

(
ð12Þ

and then construct the transition probabilities by normalising,

qij ¼
vijP
j vij

ð13Þ

Results

The Mouse Atlas

The eMouseAtlas contains, in addition to genomic data and

a large amount of structured metadata, 3D geometrical

models of the delineated anatomy of mouse embryos at

several stages of pre-natal development. In total, there are

69 embryo models available to download (Armit et al.,

2017) covering Theiler’s morphological stages (Theiler,

1989) 7 through 26. Of these, the majority contain

untagged 3D reconstructions and Optical Projection

Tomography (OPT) images, but there are 22 with anatomy

delineations (Fig. 2).

Figure 3 shows some basic information about the delin-

eated datasets. Each 3D dataset is reconstructed (Hill & Bal-

dock, 2015) from a series of 2D images arranged in layers.

The datasets are made available in the Woolz format (Piper

& Rutovitz, 1985) which is both compact and suitable for

computation of spatial operations such as union, intersec-

tion, convex hulls, and so forth. We will be concerned with

volumes of and adjacency relations between tagged ele-

ments, or in other words the sizes of anatomical regions

and which are in physical contact with each other. For this

reason, in addition to the count of tagged elements in each

dataset, Fig. 3 shows counts of tagged geometrical ele-

ments with non-zero volume and those that touch at least

one other tagged element.

It is evident that something unexpected is happening in

Fig. 3. It should not be the case that a mouse embryo loses

anatomical diversity as it develops. The data for stages 15

through 19 and 21 through 25 seem particularly problem-

atic. The explanation for this turns out to be quite mun-

dane. The first stages were tagged manually, at significant

cost, and resources were unfortunately not available consis-

tently to continue this work (Baldock and Hill, pers. comm.).

In some cases the latter stages appear to have been tagged

according to the particular interest of the researcher doing

the work. This bias in the data is nevertheless interesting in

understanding how to interpret our complexity measure in

terms of intrinsic or extrinsic structure, which we discuss fur-

ther below. Despite these defects in the data, we are able

to obtain a signal, albeit a noisy one.

We have excluded several models from the following

analysis. Although EMA149, at Theiler Stage 25, contains 78

delineated tissues, only four have non zero volume and

only two have neighbours. Models EMA76, EMA103, EMA108

and EMA118 contain disconnected regions. This results in a

qij that is not ergodic and therefore the Stationary Struc-

tural Entropy does not exist. Finally, EMA36 is an outlier sug-

gesting a drastically different tissue delineation

methodology. Its statistics are reported but excluded from

the figures.

Structural Entropy of the eMouseAtlas

We now apply our Structural Entropy measure to the

Mouse Atlas. Each stage has a different number of tagged

elements. As our goal is to quantify the degree of structure,

for each stage, we compare the Structural Entropy (Eqs 7

and 9) to the maximum possible value given by,

R1

R2

δ12

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society
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Emax ¼ � log
1

m

� �
ð14Þ

where m is the number of tagged elements. It is easy to

see that as the number of tagged elements increases, the

maximum entropy (degree of disorder) likewise increases.

From this, we can define the normalised entropies,

�E� ¼ E�
Emax

ð15Þ

which take on values from 0 to 1 and thus allow for com-

parison of the relative degree of disorder between devel-

opmental stages with different sets of tags. A value of 0

represents maximal structure, and 1 maximal disorder.

The results of this calculation are presented in Fig. 4 and

plotted against time measured in days post-conception.

Two curves are shown, one for �E0, showing the amount of

structure that is attributable purely to the volume distribu-

tion of tagged elements, with no account taken of their

spatial relationships. The second curve, for �Ep, corresponds

to the stationary distribution of the random walk among

the tagged elements, as described above. The latter

Fig. 2 The on-line eMouseAtlas viewer inspecting a cross-section of the tagged embryo at Theiler stage 12.

10 15 20 25
0

100

200

300

Theiler stage

T
ag

ge
d

el
em

en
t

co
un

t

All tagged elements
Tagged elements with volume > 0
Tagged elements with neighbours

Fig. 3 Basic statistics about datasets from the eMouseAtlas with

anatomical delineations. Some datasets contain tagged elements with

zero volume, or tagged elements which are not adjacent to any other.

Elements with zero volume indicate a problem with the underlying

data. For example ema27 at Theiler Stage 14 has zero volume ele-

ments for the left and right umbilical veins.
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incorporates information about the volume through the qii

as well as the spatial relationships through the qij, i 6¼ j.

In both cases, we see a decreasing trend. This is inter-

preted as a decrease in disorder, or an increase in structure,

as the mouse embryo develops. This signal is much clearer

in the case of �Ep, which displays an orderly, almost linear

decrease. Indeed, a least squares fit for the normalised Sta-

tionary Structural Entropy has a mean squared error of

5.5 9 10�3, or two orders of magnitude smaller than the

range of the entropy over the developmental phases cov-

ered by the dataset.

Clearly the decrease in disorder cannot be more than

piece-wise linear as that would imply the nonsensical result

that at some stage the organism becomes perfectly ordered

with exactly one tissue as E� ? 0 and beyond to negative

values of entropy which defy interpretation. A trial expo-

nential fit is also shown, �Efit ¼ e�0:2t þ 0:6, that does not

suffer from this problem of interpretation and has a mean

squared error of 4.5 9 10�3.

The data at early developmental stages bear closer inspec-

tion. Although the general trend of our Stationary Struc-

tural Entropy measure, �Ep, is a steady decrease throughout

the 13 days of development depicted in Fig. 4, there is a

short period, from days 7 to 8 (Theiler stages 10–11), in

which �Ep rises before returning to the trend. This period

corresponds to one of the most remarkable events of meta-

zoan development, gastrulation, when the primitive streak

forms and cell movements in and through the epiblast

transform the relatively orderly bilaminar disc into the three

germ layers of the body. Gastrulation is widely regarded as

being pivotal in development, Lewis Wolpert famously

remarking that it is a life event more important than birth

and marriage. It is interesting that this special stage of

embryogenesis is detected by our tracking Stationary Struc-

tural Entropy over time.

To ascertain the extent to which the Structural Entropy

calculation is biased by the number of tagged elements, we

focus on a particular model, EMA27 from Theiler stage 14.

This model contains 75 tagged elements, of which 73 have

non-zero volume. To understand how the Structural

Entropy changes as the number of elements decreases, we

merge adjacent elements. We do this by iterating through

the list of elements, and merging between one and four

neighbouring elements, chosen at random. We then calcu-

late the Structural Entropy and Stationary Structural

Entropy on this merged model (Fig. 5).

We see that by randomly merging tagged elements, we

introduce greater disorder. This is not unexpected. The orig-

inal model was tagged in a particular way intended to cor-

respond to an anatomical understanding of the embryo.

This experiment takes no account of that, it simply merges

elements that happen to be adjacent. With that done, both

the Structural Entropy and the Stationary Structural Entropy

are relatively stable with 30–60% of elements merged. Only

when a clear majority of the elements are merged do these

measures change appreciably. In particular, we find a corre-

lation of entropy and element count between 0.2 and 0.3,

suggesting only a weak correlation between our measure

and the absolute number of tagged elements.
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Stage Days

5 4
6 4.5
7 5
8 6
9 6.5
10 7
11 7.5
12 8
13 8.5
14 9
15 9.5
16 10
17 10.5
18 11
19 11.5
20 12
21 13
22 14
23 15
24 16
25 17
26 18

Fig. 4 Normalised Structural Entropy as calculated for the eMouseAtlas

data. Also shown is the least squares fit (LS Fit in the figure, with mean

squared error 5.5 9 10�3) for the Stationary Structural Entropy and a

trial exponential fit (Exp Fit in the figure, mean squared error

4.5 9 10�3). The table at right gives the correspondence between the

Theiler stages present in the data and the time in days post-conception.

Excluded from this figure is, �E0 (EMA36) = 0.83, �Ep (EMA36) = 0.31.
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Fig. 5 Normalised 0th order and Stationary Structural Entropy for mod-

els created by merging tagged elements from EMA27, at Theiler stage

14. The data points isolated at the far right are for the original model.

The merged models are created by merging at different depths: pairs,

triples or quadruples of adjacent tissues. For each depth, 25 random

models are generated and the resulting entropies are plotted according

to the resulting number of tagged elements. The element count is dis-

cretised or grouped, e.g. 20–25 elements, 25–30 elements, and so

forth. Error bars represent one standard deviation within a group.
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Discussion

When Claude Shannon was discussing with John von Neu-

mann what to call the quantity that came to be known as

entropy in Information Theory, the latter famously quipped,

You should call it entropy, for two reasons. In the

first place your uncertainty function has been used

in statistical mechanics under that name, so it

already has a name. In the second place, and more

important, nobody knows what entropy really is,

so in a debate you will always have the advan-

tage. (Tribus & McIrvine, 1971)

In an important sense, information theoretic entropy is

an attributed quantity. It is a measure, as Shannon origi-

nally called it, of uncertainty about the state of a system.

The trick that we have performed here is to define such a

system: a particle moving at random through the organs of

an embryonic mouse. We then suggested that our uncer-

tainty about the whereabouts of the particle corresponds in

some way to the structural complexity of the organism

itself. Tissues of different sizes contribute to our complexity

measure in the following way. The measure is scale-inde-

pendent in the sense that absolute tissue size plays no role.

Embryos containing a given number of tissues, all of the

same size, will have the same Structural Entropy regardless

of their size. If the tissue sizes are different, the Structural

Entropy will be correspondingly smaller. The degree of dif-

ference is the essence of order, to a first approximation.

This is captured by the 0th order measure, E0, describing the

role played by tissue volume alone.

To account for the spatial arrangement of tissues, we incor-

porate information about the connectivity between tissues.

When we consider geometrically complex structures, an

important feature is that their surface area is large compared

with their volume. This large surface area means that the lim-

inal region, or region of connectivity with adjacent tissues, is

also larger. This is the reason we claim that when we calcu-

late the Stationary Structural Entropy, Ep, it captures this kind

of structural complexity. More complex tissues ‘communicate’

more with their neighbours and this, in turn, contributes to a

decrease in the Stationary Structural Entropy. The relative dif-

ference between E0 and Ep encodes the amount of organisa-

tion that can be attributed to the spatial arrangements as

opposed to simply the amount of matter.

This approach may or may not be reasonable. We believe

that it is, mainly because it accords with our intuition

about what such order or structure ought to mean. It cap-

tures the sense that, despite the proliferation of tissues as

the embryo develops, the organism becomes more

ordered. If it did not, it would simply be a jumble of cells,

an upper bound on disorder such as measured by Davies

(2016) using the taxonomy of cell types. That this is an

upper bound is precisely what we see here: as development

progresses, the Stationary Structural Entropy decreases

relative to the equivalent disordered system, and it does so

nearly consistently.

Another important aspect of the attributive nature of

entropy arises from the data itself. In order to correctly

compare like with like, each dataset should be tagged in

the same way, using the same criteria. We have seen that

there are defects in the data, with some datasets processed

meticulously and some processed more coarsely. Even if the

data were consistently and meticulously processed it could

be argued that measures such as Structural Entropy say

more about the complexity of the underlying theoretical

anatomical model than the intrinsic complexity of the body

of the mouse. We can, however, only work with the data

and theoretical tools that we have. By deriving randomly

merged models we can see that our Structural Entropy mea-

sure is only weakly dependent on the absolute number of

tagged elements.

The potential application of Structural Entropy to neuro-

science, ageing and psychological disorders appears promis-

ing. de Reus et al. (2014) considered the human brain

connectome in an ‘edge-centric’ as opposed to a ‘node-cen-

tric’ way. In that article, communities of edges are identi-

fied; they seem to be significant but the meaning is left

open: ‘The biological meaning of link communities in the

brain is not immediately clear and very much open to scien-

tific debate’. The distinction between edge-centric and

node-centric is reminiscent of that between E0 and Ep above.

De Reus’ approach was applied as a measure of brain struc-

ture as a baseline in healthy elderly populations (Perry et al.,

2015). Yeo et al. (2016) suggest that de Reus’ approach may

provide a useful indicator for psychological phenomena like

schizophrenia, where differences were found, but it is

unclear whether they are really significant or due to differ-

ences in methodology. There have also been some attempts

to link it to general cognitive ability (Llufriu et al., 2017).

Voxel Based Morphometry (VBM; Ashburner & Friston,

2000) is now a standard technique for comparing magnetic

resonance imaging (MRI) scans tagged in a similar way to

the anatomical data that we have been considering. After

some pre-processing – tagging, smoothing and registering

images to the same spatial coordinates – the scans are com-

pared voxel-wise. Among many applications, this approach

has been famously used to show plasticity in response to

environmental demands (Maguire et al., 2000), that grey

matter normally decreases linearly with age (Good et al.,

2001), and to ascertain the degree of progression of Alzhei-

mer’s disease (Testa et al., 2004; Matsuda, 2013). VBM

shares some pre-processing requirements with what we can

call Structural Entropy Morphometry (SEM), but then pro-

ceeds very differently. VBM is a calculation on voxels (or pix-

els in two dimensions) and SEM is explicitly not, it is

concerned with the geometry of the tagged elements

themselves. Crucially, VBM measures the relationship of

scans from different groups, whereas SEM is an intrinsic

measure of the tagged object. Nevertheless it is plausible
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that SEM could recover the results of applying VBM and

could yield additional insight. This possibility suggests

potentially fruitful further research.

The concept of, and ways of method for measuring, struc-

tural entropy can be applied to a wider range of problems

than normal embryonic development. Much research atten-

tion is currently being expended on developing organoids –

small structures made from stem cells that are intended to

capture enough of the essence of a natural organ to be use-

ful for research (reviewed by Davies & Lawrence, 2018).

There is much debate within that field about how faithfully

organoids, particularly organoids made by the different

techniques of different laboratories, capture the complexity

of the organ they are intended to represent. Structural

Entropy might be one useful measure. Another possible

application is phylogeny: when discussing evolution, and

particularly evolutionary developmental biology, it would

be useful to have an objective measure of the anatomical

complexity of adult organisms of different phyla or clades.

In this paper, we have called for the increased availability

of high-quality tagged 3D datasets for the development of

computational tools for anatomy. We have examined the

eMouseAtlas dataset and produced some basic statistics

about the tagging and annotation. We have extended Path

Entropy to account for spatial structure and introduced

Structural Entropy and studied the stationary distribution

of a particle’s random walk through tagged anatomical

regions of developing mouse embryos. The stationary distri-

bution illustrates clearly how the organism becomes more

spatially structured as it develops. Finally, applications of

Structural Entropy morphometry to neuroscience and the

study of diseases related to ageing have been suggested as

areas for future research.

Glossary

Edge A connection between two vertices on a graph

(qv).

Entropy A measure of disorder: a highly ordered system

(e.g. a perfectly alternating sequence of black and white

tiles) has high entropy.

Graph A mathematical structure used to model pairwise

relationships between objects. Graphs consist of

‘vertices’ (the objects themselves) and ‘edges’ (lines that

connect them). In a model of a random walk, for

example, the vertices might represent the spatial

location of each footprint and the edges of the strides

that connect them.

Information Theory A field of science that focuses on

the quantification, storage, retrieval and communication

of information, particularly with relation to entropy.

Tag A tissue-type annotation associated with a spatial

point on a digital model of an embryo; e.g. point

(99, 65, 432) might have the tag bladder urothelium.

Note that in the section ‘Technical description of

method’, the word ‘colour’ would usually be used in

computer science or mathematics.

Vertex An elementary object in a graph (qv).
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