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Cell-in-the-loop pattern formation with
optogenetically emulated cell-to-cell signaling
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Designing and implementing synthetic biological pattern formation remains challenging due

to underlying theoretical complexity as well as the difficulty of engineering multicellular

networks biochemically. Here, we introduce a cell-in-the-loop approach where living cells

interact through in silico signaling, establishing a new testbed to interrogate theoretical

principles when internal cell dynamics are incorporated rather than modeled. We present an

easy-to-use theoretical test to predict the emergence of contrasting patterns in gene

expression among laterally inhibiting cells. Guided by the theory, we experimentally

demonstrate spontaneous checkerboard patterning in an optogenetic setup, where cell-to-

cell signaling is emulated with light inputs calculated in silico from real-time gene expression

measurements. The scheme successfully produces spontaneous, persistent checkerboard

patterns for systems of sixteen patches, in quantitative agreement with theoretical predic-

tions. Our research highlights how tools from dynamical systems theory may inform our

understanding of patterning, and illustrates the potential of cell-in-the-loop for engineering

synthetic multicellular systems.
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Spatial patterning is crucial for the proper functioning of
diverse multicellular biological systems from slime molds1

to developing embryos. The ability to synthetically engineer
multicellular patterning will facilitate advances in designing
microbial communities2–4, creating synthetic biomaterials5,6, and
programming tissue and organ growth7–10, among other appli-
cations11. While recent efforts to synthetically engineer multi-
cellular patterning have met with success (see refs. 12–14 for
reviews), relatively few of these efforts15,16 have been guided by
quantitative mathematical theory beyond numerical simulation.
In contrast, conventional engineering approaches rely on the
predictive power of theory both to design complex systems and to
build the intuition necessary to envision new capabilities. Future
progress in synthetic multicellular patterning will benefit from a
firm understanding of the underlying theoretical principles, as
well as scalable, efficient methods for implementing—and vali-
dating—these principles in practice.

Gene expression patterning has received much focus in the
theoretical literature17–23, and is also of particular interest
in regenerative medicine, since it is central to the early stages
of embryonic development and eventual cell fate
determination7,24. There are a number of challenges associated
with engineering spontaneous gene expression patterning into
biochemical systems, including how to facilitate interaction
among cells25 and achieve spatial precision in the resulting
patterns26–28. Even when successful, these implementations are
still constrained by time, expense, and the availability of bio-
logical parts satisfying parameter requirements29,30. Moreover,
it may be difficult to measure or monitor particular system
components in real time, which can hinder debugging and slow
down the design-build-test cycle31.

While numerical simulation is an important method for effi-
cient prototyping, simulations are only as valid as the models
underlying them, and simplifications or faulty assumptions can
limit the experimental applicability of simulation results. We
propose that future efforts in synthetic patterning would benefit
from an intermediate step between pure simulation and full
biochemical implementation, which could be used to validate
theories or incrementally test synthetic designs before they are
fully incorporated into the organism. Inspired by human-in-the-
loop approaches for engineering systems that must interact with
complex, living individuals32, we propose a cell-in-the-loop
approach in which physical signaling among cells is substituted
with computer-controlled inputs calculated in silico from real-

time measurements of gene expression. Cell-in-the-loop, by
incorporating live cells into the simulation, eliminates the need to
make assumptions about individual cell behavior during dynamic
evolution, while retaining flexibility in testing parameters that
remain under computational control. These benefits are parti-
cularly essential for patterning systems, in which the large
number of interacting cells can make detailed simulations pro-
hibitive or impossible.

We implement cell-in-the-loop using optogenetics, which have
been shown to afford excellent spatiotemporal precision in
applications including feedback control33–36, and which were
previously used to emulate cell-to-cell signaling for oscillatory
synchronization37. We engineer Saccharomyces cerevisiae to
respond to blue light38 by increasing gene expression as measured
by a fast-acting fluorescent reporter39. We use an optogenetic
platform capable of targeting individual cells independently of
each other36, such that the light input to any given cell can be
calculated based on the gene expression levels of other cells that
are interacting with the target cell. Both the network architecture
(which cells interact with which) as well as the exact form of
interaction are programmed into the computer, allowing us to
precisely modulate system parameters related to cell-to-cell
signaling.

We adapt a general theory for pattern emergence in large-scale
lateral inhibition systems40,41 to inform our designs and predict
steady-state outcomes. Lateral inhibition regulated by the Notch-
Delta signaling pathway is responsible for patterning in a range of
developmental contexts, including proneural stripe formation42

and subsequent neural precursor selection43 in fruit flies, as well
as patterning in the central nervous system44, inner ear45,46, and
intestine47 of vetebrates48. Inspired by these systems, we program
a computational signaling relation to emulate mutual inhibition
among groups of cells and vary the strength of the inhibition by
tuning a single digital bifurcation parameter. Once the network
architecture and signaling relation are defined, inputs to cells are
calculated solely based on measurements of those cells without
any further external control, creating a self-contained dynamical
system. Using this setup, we visualize gene expression levels of
real cells by the brightness of square patches on a virtual grid
(Fig. 1). We show spontaneous emergence of contrasting check-
erboard patterns in which neighboring patches alternate between
expressing high and low levels of gene. The theory accurately
predicts which values of the bifurcation parameter produce pat-
terns, and on average across experiments the theory also
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reduce stochastic influences

Induce gene expression
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Use light signal to mediate
lateral inhibition among patches
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Fig. 1 Spontaneous checkerboard patterning with optogenetically emulated cell-to-cell signaling. Optogenetically responsive cells signal to each other
through computer-controlled light inputs that vary in intensity based on the gene expression levels of other cells. We enact lateral inhibition according to
the theory in Section 3.1 that predicts when cells will spontaneously separate into two classes of high and low gene expression. In all figures, red denotes
in vivo and blue denotes in silico components.
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quantitatively predicts contrast levels and overall patch bright-
ness. Our results demonstrate the utility of a cell-in-the-loop
approach for designing and evaluating systems of interacting
cells, as well as probing the limits of deterministic theory in the
face of stochastic influence.

Results
Theory predicts patterning using a test for bistability. We
developed theory to predict the emergence of stable contrasting
patterns in deterministic systems of laterally inhibiting cells40,41.
Here, we adapt the theory to the present optogenetic imple-
mentation. We emphasize how our system was decomposed into
in vivo and in silico components, each of which corresponds to a
particular element in the theory, and how this correspondence
enables empirical measurement and experimental design.

Consider a system of N isogenic cells signaling to each other.
Suppose we measure for each cell a scalar output such as
fluorescence that correlates positively with gene expression level
and is designated by wi for the ith cell. The input ui to a cell
affects output levels with an empirically characterizable dose
response, which describes the steady-state level of wi for a
constant-in-time input. In our setup, the input ui is light, and
increasing input intensity increases gene expression. This portion
of the theory represents the in vivo component of the system.

To synthesize ui, we first average the measured gene
expression, wj, over all cells j signaling to cell i, and denote this
average as vi. We then set the input to the ith cell to ui= h(vi),
where h(⋅) is the signaling relation programmed into the
computer. To enact mutual inhibition, increasing gene expression
in one cell must decrease gene expression in neighboring cells.
Therefore, since higher-intensity light induces higher gene
expression, we select h(⋅) to be decreasing.

We chose a grid layout with periodic boundary conditions in
which each cell signals four other cells reciprocally. This layout
satisfies all assumptions discussed in the subsection entitled
Summary of theory, therefore we can predict contrasting
patterning in a full system of N cells based on the bistability
of an equivalent 2-cell system. If the 2-cell system is
monostable, then both cells express the same level of gene,
and the N-cell system also has a stable state in which all cells
express the same level of gene. Inversely, if the 2-cell system is
bistable, then one of the stable states corresponds to one cell
expressing high levels of gene and the other, low, and the other
stable state corresponds to the opposite situation. In this case,
two stable, contrasting steady-state patterns also exist for the N-
cell system; that is, one subset of the N cells expresses
identically high levels of gene, and the remaining cells express
identically low levels of gene (or vice versa). Contrasting steady
states can be visualized as checkerboards in which neighbors
alternate between high and low. The 2-cell system can be
assessed for bistability using a standard technique illustrated in
Fig. 2 and described in Supplementary Section 1.

To apply the theory, we must know (1) the dose response, in
our case in vivo gene expression levels under varying intensities of
light; and (2) the form of the signaling relation, here programmed
in silico. Thus, to carry out lateral inhibition experiments, we
needed to measure an empirical dose response of cells to light,
and define the computational signaling relation controlling light
inputs such that intensity was inversely related to the respon-
siveness of cells interacting with the target.

Summary of theory. Consider a system of N identical cells
modeled as single-input, single-output dynamical systems. Bio-
chemical concentrations xiðtÞ 2 Rn

þ in the ith cell evolve

according to

d
dt

xiðtÞ ¼ f ðxiðtÞ; uiðtÞÞ:
Each cell has output wiðtÞ ¼ gðxiðtÞÞ 2 Rþ and input
uiðtÞ 2 Rþ. Let the vector xðtÞ 2 RNn

þ be the vertical con-
catenation of the vectors xi(t) for all N cells, and similarly for
wðtÞ 2 RN

þ and uðtÞ 2 RN
þ. We assume each cell has a static

input–output characteristic T(⋅), that is, if a cell is given constant-
in-time input uiðtÞ ¼ uyi , it will reach a globally asymptotically
stable hyperbolic equilibrium xyi solving 0 ¼ f ðxyi ; uyi Þ with output
wy
i ¼ Tðuyi Þ ¼ gðxyi Þ. We assume T(⋅) is bounded and increasing,

meaning that increasing the input increases the output. In our
setup, the static input–output characteristic corresponds to the
empirically measured dose response.

Suppose the outputs of cells are connected to the inputs of
other cells, forming a network. We capture information about
which cells signal to which by way of the interconnectivity matrix
M 2 RN ´N

þ with entries M½ �ij ¼ 0 if cell j does not signal to cell i
and M½ �ij > 0 otherwise, with the value M½ �ij indicating the
strength of signaling. We require that the sum over all entries in a
row equal the same constant, μ 2 Rþ, regardless of the row, i.e.,P

j M½ �ij ¼ μ for all i. In our setup each cell receives signals from
four other cells with equal weights 1

4, therefore μ= 1. Defining
v(t) = Mw(t), we model lateral inhibition by letting the input to
cell i be given by ui(t)= h(vi(t)), where hð�Þ : Rþ ! Rþ is
bounded and decreasing.

Model reduction theorem. Let 1m represent the length-m col-
umn vector of all ones, and similarly for 0m. If there exists a
matrix M 2 R2 ´ 2

þ such that

ML ¼ LM where L ¼ 1m 0m
0N�m 1N�m

� �
ð1Þ

for some indexing of cells, then M is an interconnectivity matrix
for an equivalent 2-cell system whose steady-state solutions cor-
respond to steady states of the N-cell system with inter-
connectivity matrix M. In other words, if w� 2 R2

þ is the output
corresponding to a steady-state solution to the 2-cell system, then
w� ¼ Lw� is a steady-state output to the N-cell system. □

Note that the cells indexed 1 through m take on steady-state
output values w�

1 while those indexed m + 1 through N take on
steady-state output values w�

2. Condition (1) is satisfied when cells
can be grouped into two subsets within which nodes are
interchangeable; that is, reindexing nodes within a subset will
not change M41.

When

M ¼ 0 1

1 0

� �
;

the steady states of the 2-cell system are determined graphically
from the fixed points of h(T(h(T(⋅)))), as shown in Fig. 2 and
explained in Supplementary Section 1. For the reduced 2-cell
system the graphical test also ensures stability of the points
corresponding to the lower/upper intersections in Fig. 2, and
instability of the point corresponding to the middle intersection,
when the cellular dynamics are monotone in the input/output
sense49. The stability properties established graphically for the
2-cell system are preserved in the full N-cell system when
additional assumptions hold. Our setup satisfies one such
assumption from ref. 40, which stipulates cells within a subset
not signal to each other. Thus, if w� is the output corresponding
to a stable state in a bistable 2-cell system, then in the N-cell
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system, cells in one subset have higher output than cells in the
other subset. If the cells belonging to different subsets are spatially
interlaced or alternating, then the high/low dichotomy produces a
spatially contrasting pattern such as a checkerboard.

Empirical characterization informs computational parameters.
We combined the blue light-inducible VP-EL222 expression
system38,50 with a fast-acting nuclear translocation reporter
(dPSTR)39 to control and measure gene expression in Sacchar-
omyces cerevisiae. In the dark, constitutively expressed red
fluorescent protein (RFP) fused to the synthetic bZip domain
SZ251 is equally distributed between nucleus and cytoplasm due
to passive diffusion through the nuclear membrane. Under
exposure to blue light, VP-EL222 molecules dimerize and bind
the cognate promoter to activate expression of a protein com-
prising two nuclear localization signals (NLS) and SZ151. This
protein then forms a heterodimer with the RFP reporter, thereby
localizing fluorescence in the nucleus. We quantitated the degree
of nuclear localization (nuclear localization score) as the differ-
ence between mean cytoplasmic and mean nuclear fluorescence
normalized to the mean fluorescence across the entire cell. In
principle, the score is 0 if cells are not at all responding (there is
no nuclear localization) and positive otherwise (Fig. 3a, b).

We characterized the dose response of individual cells to
constant, targeted blue light exposure (Fig. 3b, c). On average,
cells exhibited a graded response to light intensity well described
by a Hill function (Fig. 3c). Variability from cell to cell was
greater than for individual cells across time, perhaps owing to
variation in cell cycle state52. As the theory is deterministic, for
patterning experiments we ultimately substituted single cells with
computationally defined patches of 4 or 6 cells, with the patch
response determined as the average response of the constituent
cells. Generating score distributions for such patches by boot-
strapping from the single-cell dose response data shows reduced
temporal and patch-patch variability as well as reduced difference
between temporal and patch–patch variability relative to the
single-cell case (Fig. 3d, Supplementary Fig. 3).

Based on the range of cellular response scores, we defined the
signaling relation h(⋅) for use in patterning experiments, which
determined the light input administered to a patch as a function
of the average scores of neighboring patches at each time step. We

chose an inhibiting Hill function with fixed Hill coefficient n= 2
and a single free parameter K with smaller values corresponding
to sharper inhibition. We combined the empirical dose response
with the computational signaling relation to generate theoretical
predictions for the mono- or bistability of a 2-cell lateral
inhibition system as K was varied between 0 and 1, corresponding
to non-patterning or patterning outcomes in a full system.

Cell-in-the-loop generates spontaneous checkerboard patterns.
We ran a series of patterning experiments emulating lateral
inhibition. Cells were randomly assigned to patches such that
cells belonging to the same patches were not necessarily neigh-
bors in physical space, thereby reducing spurious correlations that
might arise from spatially dependent factors other than the tar-
geted light input. Once assigned, cells remained in the same patch
throughout the duration of an experiment. Patches were arranged
to neighbor each other in virtual space as visualized on a
checkerboard (Fig. 4).

During patterning experiments, we took measurements and
calculated new light inputs every 10 min, about the same rate as
the estimated time constant for cell response to a switch in
illumination intensity (Supplementary Section 2.2). This choice
allowed us to avoid adjusting inputs more frequently than
responses to the previous input could be detected. We tested
systems of 16 patches with 6 cells per patch for four values of K
between 0.1 and 1. Spontaneous patterning was always achieved
in the K= 0.1 case and never in the K= 1 case, with mixed results
for K= 0.2, 0.3, near one of the theoretically predicted critical
points (Supplementary Fig. 5a). Sample time traces at K= 0.1 and
K= 1 show, respectively, the gradual deviation in score between
sets of alternating patches that characterizes a contrasting pattern,
or a rapid adoption of a non-patterning state. Visualizing the
checkerboard at individual time points or averaged over the last
hour clearly depicts the distinction between the two cases
(Fig. 5a). In the bistable case, which of the two possible
checkerboards emerged in a given experiment depended on the
stochastic initial conditions and continued noisy influences
during system evolution (Supplementary Fig. 5).

When averaged over the last hour and across experiments, the
contrast level (mean scores of sets of alternating patches) was
quantitatively well predicted by theory in the bistable region and
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the overall brightness (mean score across all patches) was well
predicted in the monostable region (Fig. 5b). When considering
individual experiments, the variability in overall brightness
increased with increasing K. In the predicted monostable cases,
stochasticity also introduced a difference between the means over
alternating patches, though statistical analyses confirm that the
difference was indistinguishable from random (Supplementary
Table 4). Taken together, these results suggest that the

deterministic theory calibrated to population averages is an
excellent quantitative predictor for mean system behavior across
time, patches (cells), and experiments, while at the same time
even small amounts of cell–cell variability and temporal
stochasticity may cause a given experiment to deviate consider-
ably from quantitative forecasts.

Because our setup allowed us to monitor both gene expression
levels and cell signaling levels, we were able to assess convergence
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to (quasi-)steady state by comparing instantaneous input-output
curves (patch score vs. administered intensity) to the steady-state
dose response (Fig. 5c). Specifically, since the time for cells to
converge to steady state under exposure to light of constant
intensity (40 min) was longer than the time between changes to
input intensity during experiments (10 min), the instantaneous
input–output curve during a patterning experiment would only
match the empirical dose response curve if the administered
intensity remained relatively constant for several frames before a
given time point—i.e., if there was little temporal variability for at
least 40 min preceding the frame. Directly plotting the temporal
variability in administered input to individual patches does
indeed reveal a decrease from the first to the last experimental
hour regardless of K value (Supplementary Fig. 6a).

Lastly, we examined the effect of patch number on patterning
outcomes through four experiments with 36 patches, 4 cells per
patch, and K= 0.1. None of the experiments spontaneously
achieved a checkerboard pattern across the whole board in 3 h,
although a control experiment preinduced with the pattern
showed that it was indeed persistent (Supplementary Fig. 7). The
input/output curve did not approach the empirical dose response
(Supplementary Fig. 8) and temporal variability in administered
intensity was the same during the first and third experimental
hour (Supplementary Fig. 6b), further supporting the conclusion
that the system never reached steady state. Interestingly, one
experiment produced two checkerboards in opposite corners that
persisted throughout the last experimental hour, but were
inverted relative to each other and did not resolve before the
end of the experiment (Supplementary Fig. 5b). Other experi-
ments also exhibited transient local patterning, although to a
lesser degree. The local patterning and the increased convergence
time are consequences of the fact that a 36-patch system admits a
much larger space of possible configurations than a 16-patch
system. Although variability in 4-cell patches was only modestly
larger than in 6-cell patches (Supplementary Fig. 3), the
stochasticity may also have contributed to a longer convergence

time. These and related challenges will require further investiga-
tion in future efforts to synthetically generate gene expression
patterns with single-cell granularity.

Discussion
In this work, we employed cell-in-the-loop, a closed-loop, hybrid
in vivo/in silico approach, to validate a theory for spontaneous
gene expression patterning among laterally inhibiting cells. We
engineered S. cerevisiae to respond optogenetically to light inputs,
then emulated cell-to-cell signaling in real time by modulating the
intensity of light inputs to cells based on real-time measurements
of gene expression. The theory made accurate quantitative pre-
dictions for average steady-state patterning outcomes across a
range of parameters. Increasing system size—by increasing the
space of possible dynamic behaviors—diminished the probability
of achieving global patterning on short timescales in the absence
of initial or external bias. Further theroetical research should
explicitly incorporate cell–cell variability and temporal stochas-
ticity in order to improve our understanding of variation in
individual experimental outcomes, patterning robustness, and the
link between individual-level and population-level behavior.

Prior work using optogenetics to generate persistent spatial
patterns in living cells has focused on reproducing53–55 or pro-
cessing56 pre-existing images projected by the light input. In
comparison to these studies, light in our system does not a priori
encode a pattern to which the cells conform; rather, light acts as a
virtual signal transmitted from cell to cell. The input intensity is
determined by cellular responses that are in turn influenced by
the received intensity, establishing a closed-loop relationship
independent of external control. That similar patterns are ulti-
mately observed in both the cellular responses and the optoge-
netic inputs arises as a consequence of their mutual dependence.

Depending on the application, cell-in-the-loop offers benefits
over purely biochemical or purely computational approaches. First,
it reduces the number of components that must be engineered into
cells. We integrated a single optogenetically induced promoter and
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value between 0.1 and 1. Cells in the same patch received the same input intensity targeted individually to each cell, as shown in the projected image. Scale
bar in fluorescence and brightfield images is 10 μm.
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a single reporter, and were able to modulate patterning outcomes
simply by reprogramming the computer. In this way, we cir-
cumvented issues associated with synthetic cell-to-cell signaling,
including parameter matching and crosstalk28,57, and alleviated
complications such as burden58,59 that arise from integrating
complex networks into cells29,31. We were also able to achieve
spatiotemporal control over the whole population of interacting
individuals and probe stochasticity at a finer level than would be
attainable with a conventional biochemical implementation.

Compared to a computer simulation, cell-in-the-loop makes no
assumptions about cell behavior or the form of biological noise,
since the cells themselves are incorporated into the system.
Although we used this setup to test the validity of a theoretical

principle, one could also envision testing the accuracy of a full
model for cell-to-cell signaling by simulating a proposed physical
mechanism of interaction, then comparing the outcome of such a
system to the outcome of a purely physical system. Cell-in-the-
loop also allows one to track system components that might
otherwise be inaccessible or difficult to measure. For example, we
were able to monitor the levels of both gene expression and
virtual signal simultaneously, which could be difficult to achieve
in a solely biochemical setup.

Once established, a cell-in-the-loop system could couple with
more complex cellular processes to achieve real-world results. One
could also envision using cell-in-the-loop as a rapid prototyping
platform or stepping stone to a fully biochemical implementation.
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Fig. 5 Theory quantitatively predicts spontaneous patterning and patch intensity during cell-in-the-loop experiments. a Sample time traces show
emergence of a contrasting pattern (K= 0.1) or convergence to a non-patterning state (K= 1). Gray lines correspond to score traces for individual patches;
green lines indicate the mean scores of sets of alternating patches. Checkerboards visualize scores at single time points (bottom) or averaged over the last
hour (top). b Theory quantitatively recapitulates experimental results for mean patch response score. Black lines denote theoretical steady-state points as a
function of the bifurcation parameter K, with solid indicating stable and dashed, unstable. All points are averaged over the last hour. Faded points
correspond to individual experiments; solid outlines are averages across experiments (N= 4 for K= 0.1, N= 3 for K= 0.2, 0.3, 1). Magenta circular points
are averages over all patches. Green points are averages over sets of alternating patches, with upward- and downward-facing triangles denoting the higher
and lower of the two means respectively. Stochasticity in the experimental system introduced contrast between the average means of sets even in regions
that were deterministically suggested to be monostable. As predicted, the contrast level (difference between means of sets of alternating patches) was
higher for lower K. Experiment-to-experiment variation in overall brightness (score averaged across all patches) was greater for higher K, an effect that
cannot be accounted for in a purely deterministic theory. c The 16-patch system with six cells per patch converges to a steady state by ~2 h into patterning
experiments. Solid outline, score values averaged over the last hour for individual patches and split into quantiles by administered intensities show decent
agreement with the empirical steady-state dose response curve. Error bars are s.e.m. Circles without outlines are quantiles at individual time points pooled
from N= 13 experiments (darker red at later times). For comparison, the dose response curve fit to empirical data is plotted in gray. Source data are
provided as a Source Data file.
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In this paradigm, one would begin with minimally engineered cells
and then sequentially replace in silico components with biochemical
ones, testing at each stage whether the remaining portions of the
network ought to be modified in structure or value before the next
component is incorporated into the cell. As an illustration, suppose
one were to implement lateral inhibition with the basic transcrip-
tional repressor circuit from27, in which cleaved intracellular Notch
domain activates a repressor for expression of Delta, the target
molecule of Notch recognition domain. One might employ the
synNotch toolbox for mammalian cells, which includes as design
choices the recognition domain/target molecule pair and the tran-
scription factor constituting the intracellular synNotch domain25.
One might begin with a cell-in-the-loop approach by engineering
just the repressor under optogenetic control, and define computa-
tional variables for the concentrations of recognition domain,
transcriptional activator (cleaved synNotch intracellular domain),
and target molecule (plus intervening pathway components) in each
cell. Using calculated activator concentration to modulate the light
input, one could simulate different parameters for the remaining
components to decide upon an activator. One could then engineer a
circuit with repressor controlled by the chosen activator and place
the activator under optogenetic control. With another round of cell-
in-the-loop, one could further restrict the range of parameters for
the combination of target molecule and recognition domain that
would produce the desired effect in vivo, and use these numbers to
guide construction of the final biochemical circuit in live cells.

Although the above example has relatively few components
and therefore few design choices, the benefits of cell-in-the-loop
should scale with circuit complexity as the parameter space—and
therefore the potential number of full circuits to test—increases
with each added component. The approach could also reveal
shortcomings in proposed designs: for example, in our setup, 36-
patch systems failed to produce spontaneous patterns on our
experimental timescale even with perfect deterministic signaling,
suggesting that it could be challenging to achieve large-scale lat-
eral inhibition patterning biochemically in a similar context.
Thus, the addition of cell-in-the-loop to the biological engineer-
ing process could greatly decrease the time, expense, and effort
required to develop synthetic multicellular systems for an
increasingly rich and promising array of applications.

Methods
Plasmid and yeast strain construction. Escherichia coli TOP10 cells (Invitrogen)
were used for plasmid cloning and propagation. The dPSTR reporter plasmid
(pDB161) contains the coding sequences of UbiY-2xSV40NLS-SynZip139,
expressed from an EL222-responsive promoter (p5xBS-CYC180)38, and mCherry-
SynZip239, expressed from the constitutive ACT1 promoter. It was constructed by
first replacing the promoter pRPL24A in the plasmid pDA18339 by pACT1 using
SacI-XbaI cut sites and subsequently replacing the promoter pSTL1 by P5xBS-
CYC180 using PCR and SapI-based Golden Gate cloning60.

The yeast strain used in this study (DBY165) was constructed by transforming
the PacI digested plasmid pDB161 into DBY4138, a strain with BY4741 background
expressing VP-EL22250 from the ACT1 promoter. The transformation was
performed using the standard lithium acetate method61.

Culture preparation. Cells were grown at 30 °C in synthetic medium (SD) con-
sisting of 2% glucose, low fluorescence yeast nitrogen base (Formedium), pH 5.8,
5 g/l ammonium sulfate, and complete supplement of amino acids and nucleotides.
Cultures were started from plate, diluted, and maintained at OD600 < 1.5 between
24 and 32 h before an experiment. For each experiment, between 3 and 5 mL of cell
culture were centrifuged at 20 °C, 3000 RCF for 6 min and enough supernatant was
removed to achieve an approximate OD600 of 4 after resuspension. Cells were then
immediately placed on agarose pads, prepared according to the procedure in
Supplementary Section 2.1.

Imaging. Images were taken under a Nikon Ti-Eclipse inverted microscope (Nikon
Instruments) with a ×40 oil-immersion objective (MRH01401, Nikon AG, Egg,
Switzerland), pE-100 bright-field light source (CoolLED, UK), and CMOS camera
ORCA-Flash4.0 (Hamamatsu Photonic, Solothurn, Switzerland) water-cooled with
a refrigerated bath circulator (A25 Refrigerated Circulator, Thermo Scientific). The

temperature was maintained at 30 °C by an opaque environmental box (Life
Imaging Services, Switzerland), and a dark cloth was additionally placed over the
microscope to fully shield cell samples from external light. Experiments were
conducted with a diffusor and a green interference filter placed in the bright-field
light path, with the Nikon Perfect Focus System (±5 AU) enabled. Fluorescence
images were acquired using a Spectra X Light Engine fluorescence excitation light
source (Lumencor, Beaverton, USA), filter cube with excitation filter 565/24 nm,
emission filter 620/52 nm, and beam splitter HC BS 585 (AHF Analysetechnik AG,
Tübingen, Germany). The final fluorescence images used for analysis were max-
imum projections across z-stacks of 5 images spanning 0.6 μm.

During experiments, the microscope was operated by the open-source software
YouScope62. Cell segmentation and tracking were performed on brightfield images
using software tools developed by Rullan et al.36 based on Dimopoulos et al.63 and
Ricicova et al.64. For each cell, the mean fluorescence in the nucleus, cytoplasm,
and across the entire cell were automatically calculated using custom Matlab®

(MathWorks) scripts following the procedure in Supplementary Section 2.2.

Light-delivery system. Optogenetic inputs were delivered to cells using the setup
developed in Rullan et al.36, in which images generated on the computer are
projected by a digital mirror device through a system of lenses that focuses the light
onto a microscope slide. Two neutral density filters (Thorlabs, 25 mm absorptive,
optical densities 0.5 and 1.3) were placed serially to achieve a total density of 1.8.

To ensure light mapped properly from the projector to the cell, images were
modified prior to projection in order to map pixels on the DMD to pixels in the
camera images. The mapping was determined through the procedure outlined in
Rullan et al.36, Fig. S6B. The procedure was performed immediately before
experiment start on an area of the agarose pad unoccupied by cells.

We observed that there was a sigmoidal relationship between the administered
illumination intensity and the measured illumination intensity in the projection
images, and also that images of uniform intensity did not evenly illuminate the
sample plane. To compensate for these effects, we modified images before
projection to linearize the administered-to-measured intensity relationship and
also to reduce the intensity of overilluminated regions to match the level attained
by underilluminated regions. Details of the procedure are available in
Supplementary Section 2.5.

Custom Matlab® code was used for manually calibrating projector intensity
before experiment start (Supplementary Section 2.5) and for automatically carrying
out experiments.

Dose response. The theory relies on a deterministic dose response curve in which
the expected steady-state response score of a cell increases as a function of constant
input intensity. We performed a series of dose response experiments to verify that
these conditions held for our yeast strain and then calculated a dose response curve
from the average response of cells to varying measured projected intensities.

Cells tended to respond much more strongly and unpredictably to the first
administered input than to later inputs regardless of the intensity of the first input.
Therefore, before administering any doses, all cells on the dish were illuminated for
10min with uniform, middling intensity light, then left in the dark for 20min to allow
the response to decay. Multiple doses were then administered in immediate succession
to cells on the plate. For a single dose, cells were illuminated with individually targeted
light with constant administered intensity per cell. Cells were imaged every 10min.
Cells that were not successfully segmented and tracked at all sampled time points in a
dose were discarded. The steady-state response of a single cell was calculated as the
average of the scores from 40 to 80min under illumination.

The final dose response curve was fit to data aggregated from three experiments.
Individual cell responses were binned by projected intensity into 6 quantiles. The
final dose response curve in the form of a leaky activating Hill function

f ðxÞ ¼ aþ b
xn

cn þ xn

was fit to the mean score values within each quantile vs. the mean measured
projected intensity within that quantile.

Patterning experiments. Before experiment start, all cells on the plate were illu-
minated for 10min with uniform, middling intensity light, then left in the dark for
10min such that responses would not fully decay, allowing for some initial variation
in nuclear localization score. Experiments lasted 3 h, during which cells were imaged
and their inputs adjusted every 10min. Preliminary experiments confirmed that cells
were alive and responsive up to 6 h after placement under the microscope, although
final experiments were constrained to 3 h to ensure cells remained in a monolayer.

Patch construction. Cells were randomly assigned to groups with a fixed number of
cells per group. Each group corresponded to a single computationally defined
patch. The score for a patch was calculated as the average of the scores of the cells
comprising the patch. By administering an input to a patch, we mean the cells in
that patch were individually targeted with the same administered input. Most
experiments were performed with 16 patches of 6 cells per patch. Higher-
dimensional experiments were performed with 36 patches of 4 cells per patch.
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Patches were arranged in virtual space into a square grid where each patch was
connected to (interacted with) each of the patches to the north, south, east, and
west, with periodic (wrap-around) boundary conditions such that each patch
interacted with four other patches (its neighbors). Note that, because cells were
randomly assigned to patches, cells to neighboring patches in virtual space were not
necessarily adjacent in real space.

Signaling relation. Every imaging period (10 min), the input to each patch was
adjusted according to the signaling relation, which was chosen to be a Hill function
with a minor computational adjustment to better utilize the available range of
illumination intensities. Specifically, the relation was given by

hðvÞ ¼ Kn

Kn þ ðmaxðsmin; vÞ � sminÞn
ð2Þ

where v was the average score across all four neighbors of a patch, n was fixed at 2,
and the minimum score smin ¼ 0:05 was the cutoff to deliver maximum illumi-
nation intensity. The bifurcation parameter K was fixed within a given experiment
at a value between 0.1 and 1, with higher K corresponding to weaker repression.

In particular, let xik be the score of the ith patch in the kth frame, and uik be the
input to the patch between the kth and (k+ 1)th frames. Then uik was calculated as

uik ¼ h
X
j

xjk

 !

where the summation is taken over the neighbors of patch i and L(⋅) is as given in
Eq. (2).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The cell score data underlying Figs. 3c and 5, as well as Supplementary Figs. 5, 6, and 8,
are available in the Source Data file. Remaining data, plasmids, and strains are available
upon request.

Code availability
Custom code to run experiments was closely integrated with the experimental setup and
cannot be executed without associated hardware. Data analysis reported in this work was
performed on the raw data using standard Matlab® functions (see the data and sample
script in the Source Data file). Code is available upon request.
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