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Engineering of bidirectional, 
cyanobacteriochrome-based light-inducible 
dimers (BICYCL)s

Jaewan Jang1,5, Kun Tang2,5, Jeffrey Youn1, Sherin McDonald3, Hannes M. Beyer2, 
Matias D. Zurbriggen    2,4 , Maruti Uppalapati    3  & G. Andrew Woolley    1 

Optogenetic tools for controlling protein–protein interactions  
(PPIs) have been developed from a small number of photosensory  
modules that respond to a limited selection of wavelengths. 
Cyanobacteriochrome (CBCR) GAF domain variants respond to  
an unmatched array of colors; however, their natural molecular  
mechanisms of action cannot easily be exploited for optogenetic  
control of PPIs. Here we developed bidirectional, cyanobacteriochrome- 
based light-inducible dimers (BICYCL)s by engineering synthetic 
light-dependent interactors for a red/green GAF domain. The systematic 
approach enables the future engineering of the broad chromatic  
palette of CBCRs for optogenetics use. BICYCLs are among the smallest 
optogenetic tools for controlling PPIs and enable either green-ON/red-OFF 
(BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 
800-fold state selectivity. The access to green wavelengths creates new 
opportunities for multiplexing with existing tools. We demonstrate the 
utility of BICYCLs for controlling protein subcellular localization and 
transcriptional processes in mammalian cells and for multiplexing with 
existing blue-light tools.

Optogenetic control of protein–protein interactions (PPIs) is a power-
ful and versatile approach for regulating diverse biological processes 
with high spatiotemporal resolution1,2. State-of-the-art optogenetic 
strategies integrate multiple tools and reporters to address complex 
processes3. However, these efforts are limited by the range of avail-
able colors: the majority of light-inducible dimerization tools oper-
ate in the blue (420–490 nm) and, to a lesser extent, the red or far-red 
(620–750 nm) range of the visible spectrum (Fig. 1a)1–7. Red light tools 
(for example, PhyB/PIF) are large (>50 kDa), or not yet structurally 
characterized3,5,8. Tools that respond to green light (520–565 nm) are 
limited to complex, homotetramerizing cobalamin-based systems9,10, 

and optoswitches responsive to other colors (for example, yellow 
(570–590 nm) and orange (590–620 nm)) remain undescribed. The 
discovery of the cyanobacteriochromes (CBCRs), photoreceptors 
composed of tandem arrays of GAF (cGMP-specific phosphodies-
terases, adenylyl cyclases and FhlA) domains, potentially expands 
the color choices for optogenetic tool development. GAF domains 
switch between two distinct conformational states triggered by E/Z 
isomerization of the 15–16 double bond in their chromophore; one 
color of light causes E to Z switching while another color triggers Z to 
E switching. The diversity of color responses of GAF domain variants 
is remarkable, and spans the full visible spectrum from ultraviolet to 
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suitability for multiplexing with the existing blue-light tools LEXY, 
LINuS and TULIPs16.

Results
Discovery of state-selective binders for Amg2
We chose AM1_C0023g2, a 190-residue, red/green GAF domain from 
Acaryochloris marina, and generated a smaller (161-residue), mono-
meric variant, Amg2 (Supplementary Figs. 1 and 2a)17, by introducing 
an L405K mutation on the carboxy-terminal helix and truncating the 
amino-terminal helix. Like most CBCRs, Amg2 uses the chromophore 
phycocyanobilin, which can be added to cell culture, or the enzymes 
needed for its biosynthesis co-expressed in bacterial or animal cells8,18.

Amg2 switches from a thermally stable, red-light-absorbing state 
(15ZPr) to a green-light-absorbing state (15EPg) under red light exposure, 
and switches in the reverse direction from 15EPg to 15ZPr with green light 
(Supplementary Fig. 2b). The 15EPg state slowly reverts to the 15ZPr state 
in darkness (half-life, 25 h at 37 °C; Supplementary Fig. 2c). We used a 
coat protein pVIII phage display based on the 55-residue GA domain 
to search for binding partners that would recognize conformational 
differences between the 15ZPr and 15EPg states of Amg2 (ref. 19). Following 

far-red light11–13. The palette of available colors, the bi-stable behav-
ior that enables precise spatial and temporal control, and the fact 
that they function as monomers without obligate oligomerization 
upon state switching make GAF domains the ideal components of 
optogenetic tools. Their small size of ~160 amino acids suits require-
ments for viral packaging and in vivo applications. However, no natu-
rally occurring or engineered light-dependent binding partners for 
CBCRs have been discovered, limiting CBCR-based optogenetic tools 
to those with a predefined natural function (for example, adenylyl  
cyclase activity)14,15.

Here, we describe the engineering of bidirectional, 
cyanobacteriochrome-based light-inducible dimers (BICYCL)s. BICYCLs  
consist of a CBCR GAF domain, and a binding partner identified and  
systematically engineered from a library of variants of the 
albumin-binding domain of protein G (GA domain) using phage dis-
play and yeast two-hybrid methods. The two optoswitches developed 
here, BICYCL-Red and BICYCL-Green (Fig. 1b), are the first CBCR-based 
tools that enable robust, versatile control of PPIs in vitro, in yeast and 
in animal cells. We demonstrate their utility for controlling subcellu-
lar protein localization and transcriptional processes, as well as their 
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Fig. 1 | BICYCL development and characterization. a, Number of reported 
non-opsin optogenetic tools plotted against their associated wavelengths of 
activation. Data obtained from optobase.org (ref. 2). b, Schematic diagram of 
the BICYCL-Green and BICYCL-Red systems. BICYCL-Green: red light causes 
Amg2 and BAmGreen to associate while green light causes dissociation. 
BICYCL-Red: green light causes Amg2 and BAmRed to associate while 
red light causes dissociation. c,d, Phage-based ELISAs of BAmGreen and 
BAmRed. BAmRed1.0 (c) was selected for binding to the 15ZPr state of Amg2. 
BAmRed1.1–1.5 are affinity-matured variants. BAmGreen1.0 (d) was selected 
for binding to the 15EPg state of Amg2. BAmGreen1.1–1.5 are affinity-matured 
variants. e, Schematic diagram of yeast two-hybrid selection, showing the 
his3/lacZ reporter assay used to find improved BICYCL-Green variants in yeast 
cells. f, β-Galactosidase activity of several variants after four rounds of yeast 

two-hybrid selection. The green/red light fold change is indicated for the 
best performing variant, var24. Only one trial was performed for screening 
purposes. g–i, ITC of BAmGreen2.4 and BAmRed1.0 binding to Amg2 in a state-
selective manner. Thermograms are shown in the upper panels and calculated 
binding isotherms in the lower panels. BAmGreen2.4 (g) was titrated into a 
solution of Amg2 in the 15EPg state and thermogram data fitted to a 1:1 binding 
model to give KD = 0.12 µM (0.063–0.18 µM) and ΔH = −9.7 ± 0.3 kcal mol−1. 
BAmGreen2.4 (h) was titrated into a solution of Amg2 in the 15ZPr state and 
thermogram data fitted to a model in which 10% of the 15EPg state remains and 
the 15ZPr state is inactive. BAmRed1.4 (i) was titrated into a solution of Amg2 
in the 15ZPr state and thermogram data fitted to a 1:1 binding model to give 
KD = 0.7 µM (0.6–0.9 µM) and ΔH = −6.2 ± 0.2 kcal mol−1.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | March 2023 | 432–441 434

Article https://doi.org/10.1038/s41592-023-01764-8

selection (Methods), we screened phage pools that displayed the librar-
ies via the pIII coat proteins using phage ELISAs19. BAmRed1.0 (for 
‘binder of Amg2-Red state’; Fig. 1b,c) and BAmGreen1.0 (for ‘binder 
of Amg2-Green state’; Fig. 1b, d) showed 7-fold selective 15ZPr/15EPg 
binding and 13-fold selective 15EPg/15ZPr binding, respectively. Neither 
BAm interacted with apo-Amg2. A second round of selection using 
new libraries based on the 1.0 versions of BAms (a soft-randomization 
approach20) identified versions 1.1–1.5 of BAmRed and BAmGreen with 
improved affinity and dynamic range (Fig. 1c,d, respectively).

The low OFF-state binding of BAmGreen variants encouraged us 
to perform another round of selection to evolve BAmGreen1.0 vari-
ants that behaved well in a cellular context. We used yeast two-hybrid 
selection, coupling the interaction of Amg2 and BAmGreen1.0 vari-
ants to growth in the absence of histidine, and selected binders to the 
15EPg state, that is, variants surviving under red light (~106 transfor-
mants; Fig. 1e). Of the surviving colonies, var24 (BAmGreen2.4) had a 

fourfold higher signal than the positive control (T + p53), and a three-
fold improvement in selective binding under red versus green light 
when compared with BAmGreen1.3, as measured by β-galactosidase 
activity (Fig. 1f). Given that BAmGreen1.3, 2.4 and BAmRed1.0, 1.4 
exhibited robust light-induced transcription in yeast (Supplementary 
Fig. 3), we characterized them further in vitro.

In vitro characterization of state-selective binders
Tested alone, all proteins appeared monomeric by size exclusion chro-
matography (SEC) (Supplementary Fig. 2d). Mixing BAmGreen1.3 or 
2.4 with Amg2 resulted in the formation of complexes under red light 
(Supplementary Fig. 4a,b), while BAmRed1.0 and 1.4 formed complexes 
with Amg2 under green light (Supplementary Fig. 4c,d). The absence of 
shifts in the SEC elution volume under green light with BAmGreen1.3/2.4 
(Supplementary Fig. 4a,b) and under red light with BAmRed1.0 (Supple-
mentary Fig. 4c) indicates that the dissociation constants (KDs) for these 
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Fig. 2 | BICYCL-Green optogenetic systems in mammalian cells.  
a, Construct layout and schematic diagram of mitochondrial BAmGreen2.4 and 
cytoplasmic Amg2. b, Representative far-red fluorescence (640 nm excitation, 
700 nm ± 25 nm emission) confocal images of Amg2 with NTOM20-mVenus-
BAmGreen2.4 in HEK293T cells. Amg2 was cycled with alternating green (525 nm, 
10 µmol m−2 s−1, 15 s) and red (680 nm, 60 µmol m−2 s−1, 60 s) light. Scale bar, 
20 µm. c, Box plot of the MCR (Methods) over several red–green light cycles 
from b (left to right) (n = 12 cells examined in three independent experiments). 
****P < 0.0001 (one-tailed t-test, 95% confidence interval). The center of the 
box indicates the median and the ends of the box indicate the 25th and 75th 
percentiles. The whiskers indicate the minimum and maximum. d, Schematic 
and bicistronic expression construct for BICYCL-Green-based light-induced gene 
expression. Amg2 was fused to the VP16 transactivator. BAmGreen was fused to 
the E (erythromycin repressor) DNA-binding protein, tethering it to a response 
construct harboring eight etr repeats (E protein operator sequence) upstream 

of a minimal promoter, (etr8)-PCMVmin. Red light causes Amg2 and BAmGreen to 
associate, inducing gene transcription. Under darkness or green light, Amg2 
dissociates from BAmGreen. e, Dynamics of gene expression induced by BICYCL-
Green. CHO-K1 cells were transiently co-transfected with the SEAP reporter and 
with the BICYCL-Green2.4 vector, v1 (Supplementary Fig. 15). Cells were exposed 
to either red light (660 nm, 20 µmol m−2 s−1), green light (525 nm, 10 µmol m−2 s−1), 
or kept in darkness for the indicated time, and SEAP levels were determined. Data 
are given as the mean ± s.d. of n = 3 independent samples. f, Experiment as in e 
with red and green light pulses, showing that 30 s red light exposure is sufficient 
to induce ~30% of the maximum transcriptional activation. Slow dark reversion 
(~25 h at 37°C) explains stronger induction with 1 h red + 23 h darkness than 
with 1 h red + 23 h green. Data are given as the mean ± s.d. of n = 4 independent 
samples. e,f, *P < 0.05, ***P < 0.0002, ****P < 0.0001; NS, not significant (one-
way ANOVA). Source data are provided as a Source Data file. For plasmids and 
abbreviations, see Supplementary Table 2.
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associations are >100 µM. The chromatogram of BAmRed1.4 indicated 
residual binding to Amg2 under red light (Supplementary Fig. 4d).

Next, we determined the binding affinities of the evolved pho-
toswitches by titrating BAmGreen1.3 and 2.4 into an isothermal titra-
tion calorimetry (ITC) cell containing red-light-irradiated Amg2. The 
obtained data fit well to a 1:1 binding model with KD = 0.25 µM and 
KD = 0.12 µM, respectively (Fig. 1g and Supplementary Fig. 5a), while 
titrating green-light-irradiated Amg2 did not cause significant bind-
ing (Fig. 1h and Supplementary Fig. 5b). Together, the SEC and ITC 
data indicate that BAmGreen1.3 exhibits >400-fold and BAmGreen2.4 
>800-fold changes in KD in green versus red light. For BAmRed1.0 and 
1.4, the ITC data also fit well to a 1:1 binding model with KD = 1.8 µM and 
0.7 µM, respectively (Fig. 1i and Supplementary Fig. 5c). We could fur-
ther confirm BAmRed affinity values using fluorescence titrations (Sup-
plementary Fig. 6). The results for BAmRed1.0, in combination with the 
SEC data, indicate a >55-fold change in KD in red versus green light. The 
KD data for all variants are summarized in Supplementary Table 1. Amg2 
in combination with BAmGreen2.4, referred to as BICYCL-Green2.4, 
exhibits both a high affinity and a high dynamic range. Amg2 in 

combination with BAmRed1.0, referred to as BICYCL-Red1.0, exhibited 
a high dynamic range, while Amg2 in combination with BAmRed1.4, 
referred to as BICYCL-Red1.4, had a higher affinity.

BICYCL-Green optogenetic systems in mammalian cells
We then implemented the BICYCL systems to control protein subcel-
lular localization and transcriptional processes in mammalian cells 
using standard transient transfection protocols. Figure 2 shows the 
performance of the BICYCL-Green optogenetic system. Holo-Amg2 
can be directly visualized by its intrinsic far-red fluorescence 
(λexcitation = 640 nm, λemission = 700 nm)17. BAmGreen2.4 was anchored 
to the mitochondrial outer membrane using an NTOM20 tag (Fig. 2a)7. 
Determining the mitochondria-to-cytoplasmic ratios (MCRs; Methods) 
enabled assessment of light-switchable protein binding. Under green 
light, Amg2 was located predominantly in the cytosol, while red light 
caused accumulation at the mitochondria, increasing the MCR by six-
fold for at least three cycles (Fig. 2b,c). No dark reversion was observed 
for at least 1 hour following irradiation (Supplementary Fig. 13). We 
note that the excitation wavelength used for visualizing Amg2 can 
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cause partial 15ZPr-to-15EPg state conversion or vice versa. Re-irradiation 
can be used to reverse this effect after imaging (Supplementary  
Fig. 14). We could also observe similar reversible control capabilities 
with BAmGreen1.3 (Supplementary Fig. 7). BICYCL-Green switches 
remained functional both with N- and C-terminal fluorescent protein 
fusions to Amg2 (Supplementary Fig. 8).

The precise observed MCR depends, in addition to changes in 
binding affinity, on expression levels as well as the apo : holo ratio of 
the photoswitchable domain4,21. Given that all of the studied binders 

showed negligible apo-state binding (Supplementary Figs. 9–12), the 
fraction of apo-protein present can be assessed by comparing mono-
meric red fluorescent protein (tagRFP) fluorescence images, which 
reflect total Amg2 protein (apo + holo) present, with direct imaging of 
Amg2, which reflects holo-protein only. We found that the apo : holo 
ratio of Amg2 could be adjusted by simply increasing the concentration 
of phycocyanobilin (Supplementary Figs. 9–12). Alternatively, mam-
malian cells engineered for expression of phycocyanobilin biosynthesis 
genes18 may be useful for producing predominately holo-protein.
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presented as the mean ± s.d. of n = 4 independent experiments. ****P < 0.0001 

(one-way ANOVA). Bottom: the time dependence of SEAP expression using the 
BICYCL-Green2.4 (FUS) system. Data are presented as the mean ± s.d. of n = 3 
independent samples. **P < 0.0021, ****P < 0.0001 (two-tailed unpaired t-test).  
c, Reversible control of gene expression using the genomically engineered 
BICYCL-Green2.4 (FUS) CHO-K1 cells. Every 24 h, the cell culture medium 
was replaced with a fresh phycocyanobilin-containing medium and the cells 
were illuminated as indicated. Data are presented as the mean ± s.d. of n = 4 
independent samples. For transcript levels, see Supplementary Fig. 21.
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To enable light-inducible gene expression by BICYCL-Green, we 
engineered split-transcription factor switches based on our previous 
work with plant phytochromes18,22,23. We designed different domain 
fusion orientations and expression vectors and assessed their behavior 
upon transient transfection into CHO-K1 cells (a Chinese hamster ovary 
cell line) using a secreted alkaline phosphatase (SEAP) reporter (Sup-
plementary Fig. 15). The molecular design V1(Amg2-VP16-IRES-E-BAm) 
resulted in the best overall performance (Fig. 2d,e and Supplementary 
Fig. 15). Testing a range of chromophore concentrations (Supplemen-
tary Fig. 16a) suggested the optimal concentration of 40 µM phycocy-
anobilin, which we used in all further cell experiments. Figure 2e shows 
the expression of SEAP in cells exposed to red light compared with 
those exposed to green light or kept in darkness for different periods of 
time. Red light caused an up to 23-fold increase in SEAP levels while very 
little background expression was observed with green light exposure. 
Transcript levels were also measured (Supplementary Fig. 17a,c,e). We 
tested different illumination protocols with varying red/green/dark 
exposure schemes and found that as little as 30 s of red light exposure 
resulted in ~30% of the maximum transcriptional activation (Fig. 2f). 
Once activated, the BICYCL-Green system remained stable in the dark, 
given that SEAP levels measured after 24 h of dark incubation were 
approximately sevenfold higher than those measured when reverting 
Amg2 to the Pr state using green light to turn off expression after 30 s 
of red light (Fig. 2f). Note that higher expression levels are observed 
with longer illumination times given that measurements are affected 
by continuous synthesis and degradation of proteins and cell growth. 
Newly synthesized Amg2 will be in the Pr state if it is synthesized during 

a dark incubation period, and newly synthesized Amg2 interacts with 
BAmRed but not with BAmGreen. In vitro measurements with purified 
proteins showed that binding of BAmGreens slows thermal reversion 
of Amg2 (Supplementary Fig. 18a), indicating that there are negligible 
effects from thermal reversion on SEAP expression.

BICYCL-Red optogenetic systems in mammalian cells
We then characterized the BICYCL-Red optoswitches using a paral-
lel set of constructs (Fig. 3). When BAmRed1.0 was anchored to the 
mitochondria, green light recruited Amg2 to the mitochondria while 
red light caused dissociation over several cycles (approx. fourfold;  
Fig. 3a–c). BAmRed1.4 behaved in a similar manner although with 
a lower dynamic range (approx. twofold; Supplementary Fig. 19) as 
expected from the in vitro KD measurements. BICYCL-Red systems 
also showed full reversibility when constructed as N-terminal fusions 
(Supplementary Fig. 20). Control of gene expression by the BICYCL-Red 
system was similar to the BICYCL-Green system, with responses to 
green and red light reversed, as expected (Fig. 3d). Green light caused 
an up to 25-fold increase in SEAP levels, while very little background 
expression was observed with red light exposure (Fig. 3e,f). In contrast 
to BAmGreens, in vitro measurements indicate that BAmReds enhance 
thermal reversion of Amg2, although the effect is small with protein 
concentrations <10 µM (Supplementary Fig. 18).

The Amg2 protein has been reported to bind biliverdin in addition 
to phycocyanobilin17. Therefore, we tested optical control of subcel-
lular protein localization and gene expression using Amg2-biliverdin 
with BAmRed1.0 and 1.4 (Extended Data Fig. 1). We could observe 
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Fig. 5 | Bidirectional switching of BICYCLs for spatial optogenetic control.  
a, Images showing a solution of purified Amg2 in the Pr state (cyan) irradiated 
with a localized beam of 660 nm light to induce Pg state (blue) formation. Pg state 
protein diffuses away from the site of irradiation. Simultaneous global green light 
(530 nm) illumination reverts molecules leaving the beam to Pr-Amg2. b, Images 
showing a solution of purified Amg2 in the Pg state irradiated with a localized 
beam of 530 nm light with or without global irradiation with 660 nm light.  
c, Representative confocal images of Amg2-mCherry with NTOM20-mVenus-
BAmGreen2.4 (Fig. 2a). Localized 514 nm irradiation (green box) (i) causes Amg2 
to dissociate from mitochondria in that region (cell A) but neighboring areas 
are also affected (cell B). Simultaneous global irradiation with 680 nm light (ii) 
minimizes this effect. For reference, (iii) and (iv) show the effects of only global 
irradiation with 514 nm or 680 nm light, respectively. Scale bar, 20 µm. d, Box 
plot of the percentage change in MCR from (i) to (ii) for cell A (localized green 

light irradiated cell) and cell B (neighboring cell). Global 680 nm illumination 
helps to preserve MCR, that is, the MCR of cell B in (ii) is higher than in (i). Four 
independent images from four different biological replicates were analyzed 
(n = 4). *P < 0.0332 (one-tailed t-test, 95% confidence interval). The center of 
the box indicates the median, and the ends of the box indicate the 25th and 75th 
percentiles. The whiskers indicate the minimum and maximum. e, Spatial gene 
expression. Light-induced spatial patterning of gene expression (24 h, upper 
panel, 660 nm (20 µmol m−2 s−1)) was achieved by illuminating genomically 
engineered BICYCL-Green cells (i), or transiently transfected BICYCL-Green 
(ii) or BICYCL-Red (iii) cells transfected with an mCherry reporter through a 
photomask. Global 525 nm illumination (24 h, 0.4 µmol m−2 s−1) sharpened the 
spatial pattern (lower panel). Scale bars, 5 mm. The photomask images shown 
were produced experimentally in at least two independent experiments. Data 
shown are representative. Source data are provided as a Source Data file.
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light-inducible control of both subcellular localization and gene 
expression; however, the effects required the addition of exogenous 
biliverdin, and the performance overall was weaker than when using 
phycocyanobilin. Although mammalian cells commonly contain bili-
verdin24, endogenous levels appear to be insufficient for chromopho-
rylation of Amg2. Further protein engineering to improve biliverdin 
binding25,26, or the use of other CBCR GAF scaffolds that selectively bind 
biliverdin24, may enable the future development of biliverdin-loaded 
CBCR-based tools.

Genomic integration of the BICYCL optogenetic systems
Although transient transfection protocols suit basic characterization 
experiments of optogenetic tools, cell-to-cell variability in expression 
levels can alter observed degrees of switching4,21. Stable integration of 
optogenetic switches into the genome provides a more homogeneous 
cell population in terms of expression levels of optogenetic tools27 
and is expected to lead to more uniform degrees of switching. Stable 
integration is necessary for certain applications such as spatial pat-
terning (see below), metabolic engineering28 and in vivo cell therapy29.

We generated a CHO-K1-derived culture harboring genomic inser-
tions of the components constituting the BICYCL-Green optoswitch to 
partially alleviate the mosaicity caused by transient DNA transfection 
approaches, thus achieving a more uniform cell-to-cell red light con-
trol of gene expression (Fig. 4a and Supplementary Fig. 21). Transient 
transfection of a matching promoter DNA construct can complement 
these cells to produce a functional optogenetic gene switch to control 
the expression of any gene of interest (GOI). Two variants were designed 
(Fig. 4a); one was inspired by the reported transcription-enhancing 
effect of DropletTFs30, in which an intrinsically disordered region 
of the human oncogene FUS (‘fused in sarcoma’; N-terminal amino 
acids, 1–214) was fused to the Amg2 domain. Transfection with a SEAP 
reporter plasmid showed that up to 500-fold red versus green light 
control of gene expression was possible with this system (Fig. 4b and 
Supplementary Fig. 22a).

Bidirectional and spatial control capabilities of BICYCLs
BICYCLs can be switched in either direction on demand and thermal 
reversion is slow enough that they behave as bi-stable switches on 
the timescale of a few hours (Supplementary Fig. 18). Alternating 
cycles of 3 h red or green light with intervening periods of darkness 
resulted in reversibly controlled on and off switching of SEAP expres-
sion determined both at the messenger RNA and protein levels (Fig. 
4c and Supplementary Fig. 22b). Bidirectional switching behavior is 
also seen with phytochromes and it enables improved spatial locali-
zation compared with systems such as LOV-based photoswitches, in 
which only dark reversion occurs4,5,22,23,31,32. Fig. 5a,b shows that optical 
control of the spatial distribution of Amg2 can be directly observed 
using a solution of purified protein. When Amg2 in the Pr state (which 

appears cyan colored) was irradiated with a localized source of red light  
(Fig. 5a, left panel), a blue spot appeared (due to the formation of the 
Pg state) and this spread over time. Simultaneous global irradiation 
of the solution with green light switched the Pg state protein back to 
the Pr state whenever it exited the zone exposed to red light, thereby 
enabling tighter spatial localization of the Pg state (Fig. 5a, right panel). 
Exactly the opposite behavior was seen with localized green light  
(Fig. 5b). The bidirectional switching of BICYCLs can be exploited 
to switch the protein activity in one cell but not in an adjacent cell.  
Figure 5c shows confocal microscopy images of cells in which localized 
green light (shown by the green rectangle) was used to cause mitochon-
drial dissociation of the BICYCL-Green system in a single cell (cell A). 
In this case, scattering of the green light also caused dissociation from 
mitochondria in a neighboring cell (cell B; Fig. 5c(i)), but global irradia-
tion with red light minimized this effect (Fig. 5c(ii),d), restricting the 
effect of the optogenetic intervention to a smaller area.

Finally, the bidirectional switching of BICYCLs enables tight spatial 
control of gene expression (Fig. 5e). We used illumination masks to 
restrict the induction of an mCherry reporter to defined areas in cell 
cultures. The cultures either contained genomically integrated copies 
of the BICYCL-Green components for uniform cell-to-cell control of 
gene expression or were transiently transfected. The observed mCherry 
fluorescence patterns corresponded well to the projected shapes, 
namely, a Nature-type ‘n’ and a bicycle-stick figure (upper panels in 
Fig. 5e(i,ii)). Simultaneous global illumination with green light from 
one face of the culture, while projecting a red light pattern through 
the illumination mask from the other, yielded a sharper image than 
exclusive red light projection (lower panels in Fig. 5e(i,ii)), demonstrat-
ing improved spatial restriction provided by the bidirectionality of the 
switch. This effect was quantified using plot intensity profiles (Supple-
mentary Fig. 23). We obtained similar results in experiments using the 
BICYCL-Red gene-switch, in which red light turned gene expression off 
in the projected areas (Fig. 5e(iii) and Supplementary Fig. 23).

Multiplexing BICYCLs with blue optogenetic tools
Optogenetic tools that respond to different colors of light pro-
vide opportunities to independently control multiple processes 
in living cells. To assess the compatibility of BICYCLs with existing 
blue-light tools, we fused Amg2 to LEXY (Fig. 6a,b) and LINuS (Sup-
plementary Fig. 24a,b), two established optogenetic switches for blue 
light-inducible protein nuclear export and import, respectively33,34. In 
the dark, LEXY-tagged Amg2 predominantly localized in the nucleus, 
as expected, and protein that remained in the cytosol, despite the 
LEXY fusion, accumulated at the mitochondria upon red light irradia-
tion (Fig. 6c). Green light reversed the mitochondrial accumulation. 
Blue-light irradiation caused nuclear export of LEXY-tagged Amg2 
to the cytoplasm. Subsequent red- or green-light irradiation then 
caused association or dissociation with mitochondrial BAmGreen1.3, 

Fig. 6 | Multiplexing BICYCLs with other optogenetic tools in mammalian 
cells. Multichromatic control of subcellular protein localization. a, Schematic 
diagram of BICYCL-Green1.3 with the blue light-inducible nuclear exporter, 
LEXY34. NES, nuclear export signal. b, Construct layout of the Amg2-LEXY 
fusion. NTOM20-mVenus-BAmGreen1.3 was constructed as in Fig. 2a. 
Light-dependent localization to the nucleus, cytosol and mitochondria was 
monitored. c, Far-red fluorescence microscopy images of Amg2-mCherry-
LEXY, co-transfected with NTOM20-mVenus-BAmGreen1.3 in HEK293T 
cells. The cells were irradiated with different light conditions prior to image 
acquisition: 680 nm (60 µmol m−2 s−1) and 525 nm (10 µmol m−2 s−1) were applied 
continuously, while 445 nm (3 µmol m−2 s−1) was pulsed at a 1/30 s (on/off) 
frequency33,34. Scale bar, 20 µm. d, Far-red fluorescence intensity of Amg2-
LEXY in the nucleus, cytoplasm, and at the mitochondria was quantified and 
nuclear-to-cytoplasmic ratio (NCR) and MCR (Supplementary Information) 
were calculated for each irradiation condition (n = 9 cells examined in three 
independent experiments). ****P < 0.0001 (one-tailed t-test, 95% confidence 
interval). The center of the box indicates the median, and the ends of the box 

indicate the 25th and 75th percentiles. The whiskers indicate the minimum 
and maximum. e–g, Multichromatic multigene orthogonal gene expression 
control. e, Schematic diagram of the bicistronic constructs engineered for co-
expression and orthogonal activity of BICYCL-Green2.4 (Amg2/BAmGreen2.4), 
BICYCL-Red1.4 (Amg2/BAmRed1.4), and TULIPs (LOVpep/ePDZ). f, Schematic 
diagram of orthogonal multichromatic gene expression control in a single 
cell. CHO-K1 cells were simultaneously transfected with constructs encoding 
red light-inducible SEAP (Amg2/BAmGreen2.4), green light-responsive FLuc 
(Amg2/BAmRed1.4) and blue light-controlled GLuc (LOVpep/ePDZ). g, Relative 
reporter levels of multigene expression using BICYCL-Green2.4, BICYCL-Red1.4 
and TULIPs tools. At 24 h after transfection the culture medium was replaced 
with 40 µM phycocyanobilin-supplemented medium. The cells were either 
incubated in the dark or illuminated for 24 h prior to reporter quantification. 
Illumination conditions: 455 nm, 10 µmol m−2 s−1; 525 nm, 10 µmol m−2 s−1; 
660 nm, 10 µmol m−2 s−1. The data are presented as the mean ± s.d. of n = 3 
independent samples. **P < 0.002, ****P < 0.0001 (one-way ANOVA with multiple 
comparisons). Source data are provided as a Source Data file.
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respectively, resulting in intense changes of the localization signals 
due to the sequential blue and red/green light-guided protein trans-
port across multiple cellular compartments and loci. In all cases, 
mitochondrial-to-cytoplasmic fluorescence ratios (Methods) were 
independent of nuclear-to-cytoplasmic fluorescence ratios and vice 
versa (Fig. 6d). The LINuS-tagged BICYCL-Green1.3 system acted with 
reversed behavior to LEXY (Supplementary Fig. 24c,d). These rapid 
and reversible light-mediated recruitment tools might be applied to 
explore other processes, for example, the functional significance of 
specific organelle transport or consequences arising from light-guided 
repositioning inside cells35. Although green light did not affect LEXY 
or LINuS (Supplementary Fig. 25a–d), we note that the lengthy and 
intense blue light exposure required for LEXY/LINuS did cause some 
15EPg-to-15ZPr state switching of Amg2; however, this could be overcome 
by simultaneous red light irradiation (Supplementary Fig. 25e–g).

To achieve independent control of the expression of multiple genes 
with red, green and blue light, we engineered three multiplexed systems 
(BICYCL-Green2.4, BICYCL-Red1.4 and blue light-activated TULIPs), six 
constructs in total (BICYCL-Green2.4, (tetO)7-SEAP, BICYCL-Red1.4, 
(etr)8-FLuc, blue light-activated TULIPs, and (UAS)5-GLuc); construct 
information in Supplementary Table 2) and co-transfected them into 
a single CHO cell culture to induce the expression of three reporters: 
SEAP under red light, Firefly luciferase (FLuc) under green light, and 
Gaussia luciferase (GLuc) under blue light in one cell (Fig. 6e,f). The 
response of this composite system was compared with the responses 
of all three reporters independently in darkness, under blue light 
(455 nm), green light (525 nm) and red light (660 nm), or with several 
combined light colors (Fig. 6g and Supplementary Fig. 25). As expected, 
red light illumination induced SEAP expression from BICYCL-Green2.4 
while other colors produced low basal SEAP levels (1–2% compared with 
red), indicating that BAmGreen2.4 specifically binds to 15EPg-Amg2  
(Fig. 6g left). With the BICYCL-Red1.4 system, FLuc expression was 
detected in the dark (because 15ZPr is the thermally stable state), and 
with green light, consistent with the selective binding of BAmRed1.4 to 
15ZPr-Amg2 (Fig. 6g middle). GLuc expression was detected only under 
blue light (Fig. 6g, right), indicating that both BICYCL-Greens and -Reds 
can be used effectively in combination with blue-light transcriptional 
controllers. To develop a strong and tight optogenetic gene expression 
tool, we systematically tested a set of other multichromatic illumina-
tion conditions together with a variety of DNA-binding proteins (Sup-
plementary Fig. 27). These data indicate that versatile, multichromatic 
control of gene expression can be achieved with the BICYCL-Green and 
BICYCL-Red systems by regulating gene dosage, chromophore concen-
tration, light intensity and the spectral light composition.

Discussion
In summary, BICYCL-Green and BICYCL-Red systems enable 
light-dependent binding in a 1:1 molar ratio, with affinities between 
120 nM and 2 µM for the ON state, and 10–800-fold lower affinity for 
the OFF state. The BICYCL-Green system enables red-ON/green-OFF 
and BICYCL-Red enables green-ON/red-OFF control of PPIs. Func-
tional responses were demonstrated by exploiting light-inducible 
PPIs in eukaryotic cells (yeast and mammalian) to enable green- and 
red-light-inducible transcription and co-localization without interfer-
ence from apo-protein, which is likely to be present in any heterologous 
system. BICYCL-Green2.4 has one of the tightest, most selective and 
fully reversible interactions of known light-inducible PPIs, as measured 
in vitro. Transfection with a SEAP reporter into a stable cell culture 
engineered for BICYCL-Green2.4 control of gene expression showed 
>500-fold red/green selectivity. The bi-stable nature of these tools also 
enables tight spatial and temporal control because irradiation with two 
different wavelengths directly controls the photoreceptor state and 
thus the ON and OFF state of the corresponding PPIs.

Although the bi-stable nature of these tools enables tight control, 
the requirement for green light may be viewed as a disadvantage for 

applications (for example, in vivo) that require high tissue penetrance. 
For this, the future engineering of GAF domains that respond to red or 
far-red wavelengths or that undergo red light switching with thermal 
relaxation may be required. Likewise, further engineering of BICYCLs 
to improve phycocyanobilin and/or biliverdin uptake is desirable. 
Substantially enhanced biliverdin uptake would enable BICYCLs to 
operate using endogenous biliverdin and would also red-shift the 
switching wavelengths.

Given that BICYCLs are based on a CBCR GAF domain (~160 resi-
dues) and a 55-residue GA three-helix bundle protein, they represent 
the smallest green/red optogenetic tools so far identified. In addition 
to the multicolor, multiplexing examples given in this work, the pro-
tein engineering pipeline we have described and the rich diversity of 
the CBCRs will open new directions for the design of novel multicolor 
optogenetic tools for in vitro and in vivo applications.
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Methods
Expression of Amg2 in Escherichia coli
To produce Amg2 in bacteria, the gene encoding Amg2 was subcloned 
into the pET24b vector containing a C-terminal poly His (6x) tag. Trans-
formed BL21(DE3) Escherichia coli (New England Biolabs, C2530H) was 
grown at 37 °C in LB medium supplemented with 50 µg ml−1 kanamycin 
until the optical density at 600 nm (OD600) reached 0.6, and expression 
was induced with 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG). 
Cells were grown at 18 °C with shaking for 16 h, collected by centrifuga-
tion, and lysed by sonication in lysis buffer (50 mM phosphate, 300 mM 
NaCl, pH 7.5). The supernatant was separated by centrifugation and 
applied to a Ni-NTA column. This was washed with lysis buffer + 15 mM 
imidazole, and subsequently eluted with lysis buffer containing 100 mM 
EDTA. Eluted apo-Amg2 was dialyzed against PBS (137 mM NaCl, 3 mM 
KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.2, + 5 mM 2-mercaptoethanol). 
2-Mercaptoethanol was then removed using an Amicon 10K spin filter, 
after which the apo-protein was loaded back onto a Ni-NTA column.  
A twofold molar excess of purified phycocyanobilin (Frontier Scien-
tific) in dimethylsulfoxide (DMSO) was added to the Ni-NTA column 
equilibrated with lysis buffer, containing the purified apo-protein and 
incubated overnight at 4 °C. Holo-protein was eluted using lysis buffer 
containing 100 mM EDTA, and then purified using a Superdex 75 10/300 
GL size exclusion column (GE Healthcare) (running in PBS at 0.4 ml min−1).

For phage display, Amg2 was cloned into an expression vector con-
taining an N-terminal GST-Avi-TEV site with a C-terminal 6x His-tag35. 
AVB100 E. coli K12 cells (AVIDITY, EVB100) were used for in vivo bioti-
nylation during recombinant expression of the protein. Cells were 
grown at 37 °C in LB medium supplemented with 100 µg ml−1 ampi-
cillin until the OD600 reached 0.6, after which the medium was then 
supplemented with 50 µM d-biotin, 0.2% l-arabinose and 1 mM IPTG. 
Cells were grown at 18 °C for 14 h. Protein purification was carried out 
as described above.

Phage display-based screening
An M13 phage pVIII library based on the GA domain described previ-
ously19 was used to find binders for the Pg or Pr state of Amg2 using 
the following protocol. MaxiSorp 96-well plates were coated with 
5 µg ml−1 neutravidin in PBS (100 µl) and blocked with 200 µl PB buffer 
(PBS, 2 mg ml−1 BSA). A total of 20 µg ml−1 (100 µl) biotinylated apo- or 
holo-Amg2 (in PBS containing 2 mg ml−1 BSA and 0.05% Tween-20) was 
added and incubated for 2 h at room temperature. After the removal 
of unbound protein, plates were either placed under green light 
(525 nm, 44 µmol m−2 s−1) to produce the Pr state, or red light (680 nm, 
16 µmol m−2 s−1) to produce the Pg state for 1 h. Apo plates were placed 
under ambient light conditions during this step. The GA domain phage 
library (~5 × 1012 c.f.u. ml−1, 100 µl) was added to the apo plate. After 
incubation for 1 h at room temperature, the supernatant containing 
the unbound phage was transferred to either a Pg or Pr state plate for 
a second negative selection, followed by a positive selection on a Pr or 
Pg state plate, respectively, for 1 h at room temperature. Following an 
extensive wash (eight times), with PBS supplemented with 0.02% Tween-
20, the bound phage was eluted and amplified following standard pro-
tocols36. The whole process was repeated twice including the apo and 
negative selections. The resulting library of positive clones obtained 
after three rounds of selection was subcloned into a pIII phagemid using 
SacI and NsiI as described previously19. At this point, ~100 colony form-
ing units from each of the positive pools were screened for binding to 
either the Pg or the Pr state of Amg2 via a phage-based ELISA (Gen5 soft-
ware for absorbance measurement)36. Fold-selectivities were calculated 
by subtracting the background binding signal from each data point.

Affinity maturation
Biased libraries were constructed in the pIII display format, based on 
doped oligonucleotides specific for lead clones BAmGreen1.0 and 
BAmRed1.0. Single-stranded DNA was isolated from each clone and 

used as a template for site-directed mutagenesis37. We used the follow-
ing oligonucleotides for mutagenesis.

BAmGreen1.0 
5’-AAGGCTGGTATCACC(N3)(N1)(N4)GAC(N2)(N2)(N4)(N2)
(N3)(N4)TTCAAC(N3)(N2) 
(N4)ATCAAT(N4)(N4)(N4)GCG(N4)(N4)(N3)(N3)(N1)(N4)
GTG(N1)(N1)(N4)(N4)(N4)(N4)GTTAAC(N1)(N1)(N3)(N4)
(N4)(N4)AAGAAC(N4)(N1)(N4)ATCCTGAAAGCTCAC-3’ 
BAmRed1.0 
5’-AAGGCTGGTATCACC(N1)(N1)(N4)GAC(N4)(N3)(N3)(N4)
(N4)(N4)TTCAAC(N3)(N1) 
(N4)ATCAAT(N4)(N2)(N4)GCG(N4)(N4)(N4)(N4)(N1)(N4)
GTG(N4)(N2)(N4)(N3)(N1)(N4)GTTAAC(N3)(N4)(N4)(N4)
(N4)(N3)AAGAAC(N4)(N1)(N4)ATCCTGAAAGCTCAC-3’ 
Where N1 is a mix of 70% A, 10% C, 10% G, 10% T 
N2 is a mix of 10% A, 70% C, 10% G, 10% T 
N3 is a mix of 10% A, 10% C, 70% G, 10% T 
N4 is a mix of 10% A, 10% C, 10% G, 70% T

Libraries were constructed using previously published protocols 
and this resulted in a diversity of approximately 109 different clones38. 
Affinity maturation selection was performed using the same protocol 
as for naive selection except that streptavidin was used at 2 µg ml−1, and 
5 µg ml−1 Amg2 was added to each well.

Expression of binders in Escherichia coli
Selected binders were subcloned from pIII phagemids into the pET24b 
expression vector containing a C-terminal poly His (6x) tag and trans-
formed into BL21(DE3) cells. Cells were grown until the mid-log phase 
(OD600 ~ 0.6), and then induced with 0.75 mM IPTG and grown at 20 °C 
for 18 h (at 180 r.p.m.). Cells were collected, sonicated in lysis buffer 
(50 mM phosphate, 300 mM NaCl, pH 7.2) and centrifuged to remove 
cell debris. The supernatant was loaded onto a Ni-NTA column, washed 
with lysis buffer containing 15 mM imidazole, and eluted using lysis 
buffer containing 250 mM imidazole. Following elution from the 
Ni-NTA column, proteins were dialyzed against 1x PBS (pH 7.2) and 
further purified using a Superdex 75 10/300 GL size exclusion column 
(GE Healthcare) in PBS (137 mM NaCl, 3 mM KCl, 8 mM Na2HPO4, 1.5 mM 
KH2PO4, pH 7.2, 0.4 ml min−1 flow rate).

BAmGreen2.4 was expressed with a SUMO (small ubiquitin-like 
modifier) tag at the N-terminus using the same procedure as described 
above. Following elution of SUMO-BAmGreen2.4 from the Ni-NTA col-
umn, the protein was dialyzed against 1x PBS (pH 6.5) overnight at 4 °C. 
Following dialysis, the SUMO tag was removed overnight using SUMO 
protease (ULP1, a gift from the Kanelis laboratory) with 0.5 mM CHAPS 
(3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate) 
added to keep BAmGreen2.4 soluble. The cleaved product was purified 
using a Superdex 75 10/300 GL size exclusion column in 1x PBS (pH 
7.0). Protein was exchanged into 1x PBS (pH 7.2) for characterization.

Size exclusion binding assay
Amg2 (80 µM) was mixed with each binder (80 µM) in 1x PBS (pH 7.2) 
and injected onto a Superdex 75 10/300 GL size exclusion column (GE 
Healthcare, 0.4 ml min−1 flow rate) maintained in the dark or while 
both the column and sample were irradiated with either red (680 nm, 
85 µmol m−2 s−1) or green (525 nm, 44 µmol m−2 s−1) light. Eluted proteins 
were collected in 0.45 ml fractions, each of which was electrophoresed 
on a 12.5% SDS-PAGE gel. The column was calibrated using size stand-
ards (3 mg ml−1 each of conalbumin, carbonic anhydrase, ribonuclease 
A and aprotinin).

Ultraviolet–visible light spectroscopy measurements
Ultraviolet–visible light spectra were obtained using a Perkin Elmer 
Lambda 35 spectrophotometer with a temperature-controlled cuvette 
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holder (Quantum Northwest). Amg2 samples were irradiated for 20 s 
with 680 nm light, and the absorbance spectra were acquired at 1 h 
intervals for 24 h at 37 °C. Spectra were analyzed using UV WinLab 
(v2.85.04, Perkin Elmer).

Fluorescence quenching binding measurements
To a fixed concentration of Amg2 (3 µM) in 1x PBS (pH 7.2), increasing 
amounts of BAmRed1.0 or wild-type GA domain (1–20 µM) were added, 
and the samples were irradiated with a 525 nm light-emitting diode 
(LED; to produce the Pr state) for 30 min at room temperature. Samples 
were excited at 628 nm and fluorescence emission was collected at 
678 ± 37 nm using a BMG Labtech Clariostar plate reader and analyzed 
using MARS Data Analysis Software v3.33 (BMG Labtech). Fluorescence 
intensity data were fitted to the Morrison equation for tight binding:

I (Btot) = Iinit + (Ifinal − Iinit)

[ (Btot+Atot+Kd)−√(−Btot−Atot−Kd)
2−(4AtotBtot)

2Atot
]

where Atot = [Amg2] and Btot = [BAmRed1.0].

Isothermal titration calorimetry
The ITC experiments were performed using a MicroCal VP-ITC Micro-
Calorimeter. Samples were prepared as described above for SEC bind-
ing assays. Titration experiments were performed at 25 °C. The syringe 
contained 250 µl of the binder, BAmRed or BAmGreen, at 550 µM or 
750 µM, respectively. The cell (1.4 ml) contained Amg2 (45 µM). To 
obtain the Pg state, samples were pre-irradiated at 680 nm. To obtain 
the Pr state, samples were pre-irradiated at 525 nm prior to transferral 
into the cell. A small amount of the undesired state was formed in each 
case due to a brief exposure to low-intensity white light required for 
loading the syringe into the instrument. All samples were equilibrated 
with 1x PBS, pH 7.2. Injection volumes were 10 µl for BAmRed1.0/1.4 
and 5 µl for BAmGreen1.3/2.4 with a 300 s spacing between injections. 
Thermogram data were integrated using NITPIC39 and binding analysis 
was carried out using SEDPHAT with the recommend protocols40,41.

In vitro spatial control
Purified Amg2 was loaded onto a 1 mm quartz cuvette. One side of 
the cuvette was covered with tin foil with a small hole in the center. An 
optical fiber connected to a 660 nm LED (Thorlabs, 7.1 mW cm−2) was 
positioned in the middle of the hole while a 530 nm LED (Thorlabs, 
0.65 mW cm−2) was used to globally irradiate the other side of the 
cuvette. The same experiment was also carried out without 530 nm 
irradiation. At the indicated time points (10, 20 and 60 min) a picture 
was taken. Alternatively, an optical fiber connected to a 530 nm LED 
(Thorlabs, 3.71 mW cm−2) was positioned in the middle of the hole, 
while a 660 nm LED (Thorlabs, 0.85 mW cm−2) was used to globally 
irradiate the other side.

Construction of yeast plasmids
The strains Y2HGOLD (MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, 
gal4Δ, gal80Δ, LYS2::GAL1UAS-GAL1TATA-His3, GAL2UAS-Gal2TATA-Ade2, URA
3::MEL1UAS-Mel1TATA, AUR1-C MEL1) and Y187 (MATα, ura3-52, his3-200, 
ade2-101, trp-901, leu2-3, 112, gal4Δ, gal80Δ, met-, URA3::GAL1UAS-Gal-
1TATA-LacZ, MEL1) were purchased from Clontech (630489). pGAL4AD-x 
and pGAL4BD-y plasmids were gifts from C. Tucker (Addgene 
plasmid 28246, RRID:Addgene_28246; Addgene plasmid 28243, 
RRID:Addgene_28243) as pGAL4AD-CIB1 and pGAL4BD-Cry2 (ref. 42). 
The Amg2 gene was amplified using PCR and inserted (Gibson Assem-
bly) into either the pGAL4AD or the pGAL4BD vector by replacing a CIB1 
or Cry2 gene, respectively. Binder constructs were also subcloned into 
both plasmids using the same protocol. The BAmGreen library genes 
from the p3 phage display affinity maturation step were amplified using 
PCR and inserted between the BglII and BamHI restriction enzyme cut 

sites in the pGAL4AD vector. For the positive control, pGBKT7-p53 
and pGADT7-T (Takara, Clontech) were used, while the empty vectors 
(pGBKT7 DNA-BD Cloning Vector and pGADT7 AD Cloning Vector, 
Takara, Clontech) were used for the negative control.

Yeast two-hybrid assays
Library screening.  The pGAL4AD-BAmGreen library and 
pGAL4BD-Amg2 were transformed into Y187 and Y2HGOLD, respec-
tively. Y2HGOLD was plated onto yeast synthetic medium lacking 
tryptophan (that is, dropout (DO)−W medium), while Y187 was plated 
onto yeast synthetic medium lacking leucine (DO−L medium). The 
Y187 colonies transformed with the pGAL4AD-BAmGreen library were 
scraped from DO−L plates and used to inoculate 10 ml YPDA medium 
(1% yeast extract, 2% peptone, 2% glucose, 0.02% adenine) along with a 
few Y2HGOLD colonies collected from the DO−W plates. After an over-
night mating process (following the manufacturer’s instructions), cells 
were plated onto triple dropout (TDO)−L/W/H medium (yeast synthetic 
medium lacking leucine, tryptophan and histidine) containing 20 µM 
phycocyanobilin and 1 mM 3-amino-1,2,4-triazole (3-AT) and grown 
under 680 nm light (4.6 µmol m−2 s−1) for 3 days. Afterwards, colonies 
were scraped from the plate and re-plated onto TDO−L/W/H medium 
(+ 20 µM phycocyanobilin, 1 mM 3-AT). This process was performed 
four times in total. Following the fourth round, ~20 colonies were used 
to inoculate 5 ml double dropout (DDO)−L/W medium (yeast synthetic 
medium lacking leucine and tryptophan) for a β-galactosidase activity 
assay described in the next section.

β-Galactosidase assay. To assay light-inducible heterodimeriza-
tion of Amg2/BAm constructs, Y187 and Y2HGOLD strains containing 
pGAL4AD-x and pGAL4BD-y, respectively, were mated in 5 ml YPDA 
medium overnight. Mated clones were selected on DDO−L/W medium. 
The DDO−L/W medium contained 2 g l−1 dropout medium (Bioshop; no 
uracil, no histidine, no leucine, no tryptophan, no adenine), 2% glucose, 
50 mg l−1 histidine, 100 mg l−1 adenine hemisulfate, 20 mg l−1 uracil, 
1.7 g l−1 yeast nitrogen base (Biobasic), 5 g l−1 ammonium sulfate (Bio-
shop). A single colony was picked and used to inoculate 5 ml DDO−L/W 
medium then grown at 30 °C for 36 h (160 r.p.m.). Following growth, 
cells were diluted to an OD600 of 0.2 in 1.2 ml DDO−L/W medium contain-
ing 10 µM phycocyanobilin (Frontier Scientific). Cultures were grown in 
the dark for 3 h, then grown with either red (680 nm, 1.8 µmol m−2 s−1) or 
green (525 nm, 3.2 µmol m−2 s−1) light irradiation for another 4 h. These 
intensities did not appear to cause any significant bleaching of phyco-
cyanobilin in solution over this timeframe. After the 7 h growth period, 
800 µl cells were collected and washed with Z-buffer (Clontech Labo-
ratories), followed by lysis with Y Cell Lytic reagent (Sigma Aldrich). 
β-Galactosidase activity was measured following the protocol described 
in the Matchmaker Gold Yeast Two-Hybrid System (Takara, Clon-
tech) manual using ONPG (o-nitrophenyl-β-d-galactopyranosidase)  
as a substrate. The experiment was performed in quadruplicate.

Live cell imaging
Mammalian codon-optimized Amg2 (BioBasic) with a C-terminal 
mCherry or N-terminal tagRFP was subcloned into pTRIEX (a gift 
from K. Hahn, Addgene plasmid 81041)7 and a pLL vector (a gift from  
B. Kuhlman, Addgene plasmid 60415)6 containing a cytomegalovirus 
promoter for mammalian cell expression. BAm genes were subcloned 
into the same vector with an N-terminal mVenus tag that contains 
an NTOM20 mitochondrial localization tag on its N terminus (a gift 
from K. Hahn, Addgene plasmid 81010)7. HEK293T cells (a gift from 
A. McGuigan, ATCC) were cultured in DMEM supplemented with 10% 
FBS, phenol red, streptomycin, penicillin and amphotericin. For mul-
ticolor control experiments, the Amg2 gene was subcloned into pDN77 
(LINuS, Addgene plasmid 61347, RRID:Addgene_61343) and pDN122 
(LEXY, Addgene plasmid 72655, RRID:Addgene_72657) upstream of 
the NES (nuclear export signal) and NLS (nuclear localization signal) 
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tags, respectively. Cells were seeded into a four-chamber imaging plate 
(Labtek) and grown at 37°C (5% CO2) for at least 24 h. Transfection of 
each plasmid was carried out using lipofectamine 3000 (Invitrogen) 
and cells were incubated at 37 °C (5% CO2) for a further 24 h prior to 
imaging. Approximately 4 h prior to imaging, 40 µM phycocyanobilin 
in DMSO (0.3% final [DMSO]) was added to each well and replaced with 
fresh DMEM immediately before imaging. For imaging experiments 
with biliverdin, 40 µM biliverdin (Frontier Scientific) was added 1 h 
following transfection. Cells were incubated for at least 24 h, then 
replaced with fresh DMEM for imaging.

Imaging was carried out using a Nikon A1R resonant confocal 
microscope with an Apo ×60 oil λS differential interference contrast 
N2 objective lens, numerical aperture 1.40. mVenus underwent exci-
tation with a 488 nm laser (20 mW) and emission was monitored at 
585/35 nm, while tagRFP/mCherry excitation involved a 561 nm laser 
(20 mW) and emission was monitored at 595/50 nm. A 640 nm laser 
(16% intensity) was used to excite Amg2 and its emission was collected 
at 700/50 nm. For co-localization experiments, the Pr and Pg states 
were obtained by irradiation with a 525 nm laser (10 µmol m−2 s−1 for 
15 s) or 680 nm (60 µmol m−2 s−1 for 1 min) using a ThorLabs LED. For 
LINuS/LEXY experiments, a 445 nm laser (20 mW, 4% intensity) was 
pulsed for 1 s every 30 s for 15 min. For the biliverdin experiments, cells 
were dark adapted for at least 30 min prior to acquisition of the dark 
(Pfr) state, while irradiation with a 735 nm LED (0.5 µmol m−2 s−1) was 
used to produce the light (Po) state.

The MCRs of fluorescence intensity were calculated as described4. 
A mitochondrial mask based on the NTOM20-mVenus-BAm binder 
image was created using the threshold function in ImageJ (v1.53a).  
A cytoplasmic region of interest was selected outside of this mitochon-
drial mask. Both the mitochondrial and cytoplasmic fluorescence were 
averaged by dividing by the number of pixels. As noted by Hallett et al.4 
the measured mitochondrial fluorescence has contributions from the 
cytoplasmic fluorescence above and below the mitochondria. Thus, the 
true mitochondrial fluorescence was calculated by subtracting cyto-
plasmic fluorescence from the measured mitochondrial fluorescence4. 
MCR was calculated by dividing the true mitochondrial fluorescence 
by the cytoplasmic fluorescence.

For single-cell control experiments, a small region of interest was 
assigned to one cell. The region of interest was pulsed with a 514 nm 
laser (20 mW) at 0.05–0.2% intensity for 20 s with or without 680 nm 
Thorlab LED (60 µmol m−2 s−1) global irradiation. Far-red fluorescence 
for Amg2 and mVenus fluorescence was obtained as above.

Gene expression in CHO cells
The plasmids used for transient transfection were cloned with AQUA43 
or T4 ligation and detailed information is in Supplementary Table 2. 
Approximately 50,000 CHO-K1 cells (DSMZ, ACC 110) per well in Ham’s 
F12 Medium (PAN Biotech) supplemented with 125 U ml−1 penicillin, 
125 U ml−1 streptomycin, and 10% FBS (PAN Biotech, cat. no. P30-3602) 
were seeded onto 24-well plates. The next day, 750 ng DNA-mix was 
transfected in equimolar plasmid amounts (w/w) using polyethyl-
enimine (Polysciences Inc. Europe). The medium was exchanged 4 h 
after transfection and cells were cultured overnight in the dark. At 
24 h after the transfection, the medium was replaced 1 h prior to illu-
mination with a pre-warmed medium additionally supplemented with 
phycocyanobilin (Frontier Specialty Chemicals, cat. no. P14137; Sirius 
Fine Chemicals, SC-1800) at a concentration of 40 µM if not indicated 
otherwise. The cells were then illuminated with light for indicated 
time periods or kept in the dark. Blue (455 nm), green (525 nm) and 
red (660 nm) illuminations were performed using custom-made LED 
arrays (fluence is given in the figure legends). For kinetic experiments, 
cells were continuously illuminated with 660 nm (20 µmol m−2 s−1) or 
525 nm (10 µmol m−2 s−1) light for the indicated time or kept in dark-
ness as a control. For BICYCL-biliverdin-mediated gene expression 
experiments, CHO-K1 cells were seeded as above, and transiently 

co-transfected with BICYCLs and the SEAP reporter. At 24 h after 
transfection the cells were changed into Hams medium with 40 µM 
biliverdin (Biliverdin hydrochloride, ChemCruz, sc-263030, dissolved 
in DMSO) and exposed to either 590 nm (20 µmol m−2 s−1), or 700 nm 
(20 µmol m−2 s−1) for 24 h.

For the qRT-PCR experiments, RNA was isolated using the Nucle-
oSpin RNA Plus Kit (Macherey Nagel). The extracted RNA was adjusted 
to a final concentration of 20 ng µl−1 and converted into complementary 
DNA using the LunaScript RT SuperMix Kit (NEB). qPCR experiments 
were conducted using the Luna Universal Probe qPCR Master Mix (NEB) 
with 500 ng cDNA per sample in triplicate reactions. OneStep Plus 
Real-Time PCR system (Applied Biosystems) or qTOWER3 real-time 
PCR (Analytik Jena AG) was used with the following cycling condi-
tions: 95 °C for 10 min for initial denaturation followed by 40 cycles 
of (95 °C for 15 s, 60 °C for 60 s). The raw data were analyzed using the 
LinRegPCR program44. Normalized expression of the transcript level 
was then calculated using GAPDH as the reference. Reporter SEAP and 
GLuc levels were quantified in the cell culture medium, and FLuc was 
quantified in cell lysates, as detailed before22.

Gene expression in stable CHO cells
Construction of stable cell lines. The Sleeping Beauty (SB) 
SB100X transposase system was used for genome engineer-
ing45,46. BICYCL-Green systems were engineered into the optimized 
SB-compatible plasmid pSBbi-GP (a gift from E. Kowarz, Addgene plas-
mid 60511, RRID:Addgene_60511)46 via AQUA cloning43. A total of 3 µg 
pKT912 (ITR-PEF1a-Amg2-VP16-IRES-E-BAmGreen2.4-pA::RPBSA-GFP-
2A-Puro-pA-ITR) or pKT914 (ITR-PEF1a-Amg2-FUS-VP16-IRES-E- 
BAmGreen2.4-pA::RPBSA-GFP-2A-Puro-pA-ITR) were co-transfected 
into CHO-K1 cells with 0.75 µg of the SB transposase expression vector 
(a gift from Z. Izsvak, Addgene plasmid 34879, RRID:Addgene_34879)45, 
followed by selection with puromycin (10 µg ml−1) for 2 weeks.

Reversibility of gene expression. Stable cells containing the 
FUS-modified BICYCL-Green photoswitch were transfected with a 
SEAP reporter plasmid (pKM081) as described above. At 24 h after 
transfection, the cells were illuminated with red light (660 nm,  
20 µmol m−2 s−1) or green light (525 nm, 10 µmol m−2 s−1) for 3 h 
and then incubated in the dark for another 21 h. After each 24 h 
cycle the medium was replaced with fresh medium supplemented 
with 40 µM phycocyanobilin, and the cells were again illuminated 
for 3 h. Every 24 h, the illumination conditions were swapped 
with respect to the previous cycle (660 nm–525 nm–660 nm, or 
525 nm–660 nm–525 nm). At the indicated time points, SEAP produc-
tion was quantified in the supernatant, and cells were trypsinized 
for RT-qPCR.

Light-induced pattern formation with photomasks. For photomask 
experiments, the mCherry reporter plasmid pKM269 was transfected 
into BICYCL-Green stable cells (Fig. 5e(i)); for transient transfection, 
pKT138 was co-transfected with BICYCL (BICYCL-Green: pKT215,  
Fig. 5e(ii); BICYCL-Red, pKT214, Fig. 5e(iii)) into CHO-K1 cells. At 24 h 
after transfection, the medium was exchanged with a fresh medium 
containing 40 µM phycocyanobilin. The cells were exposed to red 
light (660 nm, 20 µmol m−2 s−1) from below through a photomask, and 
green light (525 nm, 0.4 µmol m−2 s−1) from above for 24 h. Photomasks 
were created with Fusion360 and 3D-printed using black filament 
(PRUSA). The fluorescence images are stitched tiles acquired using a 
CFI Plan Apochromat λD ×4 Nikon objective (NA 0.4) with an epifluo-
rescence microscope (Nikon Ti2; mCherry excitation 578/21 nm, emis-
sion 641/75 nm; green fluorescent protein (GFP) excitation 470/40 nm, 
emission 525/50 nm). Tiles were corrected for shading using the Fiji47 
and the BaSiC plugin48, and then stitched using the Grid/Collection 
stitching plugin. The stitched images were downscaled on average to 
2.5% of their original size in Fiji and adjusted in the same brightness and 
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contrast for each group with or without green light. The final results 
were visualized in OMERO49.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data associated with this study are present in the article and the 
Supplementary Information. Source data are provided with this paper.
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Extended Data Fig. 1 | Performance of the BICYCL system with biliverdin 
(BV). (a) Schematic showing mVenus-BAmRed anchored to the mitochondrial 
membrane via an NTOM20 tag. tagRFP-Amg2-BV is localized to the mitochondria 
in the dark and dispersed in the cytoplasm under far-red light. (b) mVenus 
fluorescence and tagRFP fluorescence confocal microscopy images of Amg2-
tagRFP in HEK293T cells with 40 µM biliverdin added 24 h prior to imaging 
(direct fluorescence of BV could not be detected, as reported by Fushimi et al.17). 
Confocal images were obtained on cells co-transfected with pLL-tagRFP-Amg2 
and NTOM20-mVenus-BAmRed1.4 (top) or BAmRed1.0 (bottom). (Scale bar: 
20 µm). Cells were adapted to the dark state for 30 min prior to acquiring Pfr state 

images. The experiment was independently repeated four times with similar 
results. (c) Schematic of BICYCL-controlled gene expression with biliverdin. 
(d) Constructs tested for gene expression. CHO-K1 cells were transiently co-
transfected with BICYCLs and the SEAP reporter. Cells were exposed to either 
590 nm (20 µmol m−2 s−1), or 700 nm (20 µmol m−2 s−1) for 24 h. Data represent 
mean values ± SD; n = 3 independent samples. p values shown were calculated by 
2-tailed unpaired t-test. *p < 0.0332, **p < 0.0021, ***p < 0.0002, ****p < 0.0001; 
n.s., not significant. Source data are provided as a Source Data file. For plasmids 
and abbreviations, see Supplementary Table 2.
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Screening of hit clones using phage ELISA (Fig. 1c,d) and yeast two hybrid (Fig. 1f), each single clone was inoculated and either screened for 
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Yeast two hybrid experiments for validation of BAm binders were done with at least four cultures with each light conditions, consistent with 
previous optogenetic tools tested in yeast two hybrid settings. see ref. 4 (Hallet, R. A. et al.) in the main text. 
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cells. Three distinct wells were taken for each light condition and/or time point. (Fig. 2e,f; 3e,f; 4b,c; 5g; Extended Fig.1d; Supplementary Fig. 
15b,c; 16; 22a; 26 and 27)  
 
Transcript/mRNA quantifications (Supplementary Fig.17, 21 and 22b): for each illumination/time condition, cell samples were taken, RNA 
extracted and cDNA generated. For each sample, three technical replicates were used for the quantification of each transcript (Amg2, BAms, 
SEAP, and GAPDH).  
 
Fluorescence microscopy determinations in HEK293T cells (Figs. 2,3,4 and Supplementary Fig. S7-14, S19, 20, 24, 25): 2-4 independent 
experiments for each construct combination and illumination condition were used for microscopy observation. Images (n shown in the figure 
legends) were taken with a Nikon microscope for each condition. Representative images are shown. 
 
Fluorescence microscopy determinations in photomask (Fig. 4g and Supplementary Fig. 23): 2-3 independent experiments for each  
combination and illumination condition were used for microscopy observation. Images were taken with a Nikon microscope for each 
condition. Representative images are shown. 

Data exclusions Outliers in MCR measurements were excluded, but shown in the box plots. Otherwise, no data was excluded.
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